...
首页> 外文期刊>Journal of Tribology >A New Approach for Including Cage Flexibility in Dynamic Bearing Models by Using Combined Explicit Finite and Discrete Element Methods
【24h】

A New Approach for Including Cage Flexibility in Dynamic Bearing Models by Using Combined Explicit Finite and Discrete Element Methods

机译:显式有限元与离散元相结合的动态轴承模型中保持架柔韧性的新方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this investigation, a new approach was developed to study the influence of cage flexibility on the dynamics of inner and outer races and balls in a bearing. A 3D explicit finite element model (EFEM) of the cage was developed and combined with an existing discrete element dynamic bearing model (DBM) with six degrees of freedom. The EFEM was used to determine the cage dynamics, deformation, and resulting stresses in a ball bearing under various operating conditions. A novel algorithm was developed to determine the contact forces between the rigid balls and the flexible (deformable) cage. In this new flexible cage dynamic bearing model, the discrete and finite element models interact at each time step to determine the position, velocity, acceleration, and forces of all bearing components. The combined model was applied to investigate the influence of cage flexibility on ball-cage interactions and the resulting ball motion, cage whirl, and the effects of shaft misalignment. The model demonstrates that cage flexibility (deflection) has a significant influence on the ball-cage interaction. The results from this investigation demonstrate that the magnitude of ball-cage impacts and the ball sliding reduced in the presence of a flexible cage; however, as expected, the cage overall motion and angular velocity were largely unaffected by the cage flexibility. During high-speed operation, centrifugal forces contribute substantially to the total cage deformation and resulting stresses. When shaft misalignment is considered, stress cycles are experienced in the bridge and rail sections of the cage where fatigue failures have been observed in practice and in experimental studies.
机译:在这项研究中,开发了一种新的方法来研究保持架柔韧性对轴承中内圈和外圈以及滚珠动力学的影响。开发了笼子的3D显式有限元模型(EFEM),并将其与现有的具有六个自由度的离散元素动态轴承模型(DBM)结合。 EFEM用于确定在各种操作条件下球轴承中的保持架动力学,变形和所产生的应力。开发了一种新颖的算法来确定刚性球和柔性(可变形)保持架之间的接触力。在这种新的柔性保持架动态轴承模型中,离散和有限元模型在每个时间步相互作用,以确定所有轴承组件的位置,速度,加速度和力。组合模型用于研究球笼弹性对球笼相互作用的影响,以及由此产生的球运动,球笼旋转和轴未对准的影响。该模型表明,保持架的柔韧性(挠度)对球-保持架的相互作用有重大影响。这项研究的结果表明,在具有柔性保持架的情况下,球保持架撞击的大小和球的滑动减小了。但是,正如预期的那样,保持架的整体运动和角速度在很大程度上不受保持架柔韧性的影响。在高速运行过程中,离心力会极大地影响总的保持架变形和应力。考虑轴不对中时,在保持架的桥梁和轨道部分会经历应力循环,在实践和实验研究中都观察到疲劳失效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号