...
首页> 外文期刊>Journal of Tribology >Design Optimization of Ultra-Low Flying Head-Disk Interfaces Using an Improved Elastic-Plastic Rough Surface Model
【24h】

Design Optimization of Ultra-Low Flying Head-Disk Interfaces Using an Improved Elastic-Plastic Rough Surface Model

机译:使用改进的弹塑性粗糙表面模型优化超低飞头磁盘接口

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Sub-5 nm flying head-disk interfaces (HDIs) designed to attain extremely high areal recording densities of the order of Tbit/in{sup}2 are susceptible to strong adhesive forces, which can lead to subsequent contact, bouncing vibration, and high friction. Accurate prediction of the relevant interfacial forces can help ensure successful implementation of ultra-low flying HDIs. In this study, an improved rough surface model is developed to estimate the adhesive, contact, and friction forces as well as the mean contact pressure relevant to sub-5 nm HDIs. The improved model was applied to four different HDIs of varying roughness and contact conditions, and was compared to the sub-boundary lubrication rough surface model. It was found that the interfacial forces in HDIs undergoing primarily elastic-plastic and plastic contact are more accurately predicted with the improved model, while under predominantly elastic contact conditions, the two models give similar results. The improved model was then used to systematically investigate the effect of roughness parameters on the interfacial forces and mean contact pressure (response). The trends in the responses were investigated via a series of regression models using a full 3{sup}3 factorial design. It was found that the adhesive and net normal interfacial forces increase with increasing mean radius R of asperities when the mean separation is small (≈0.5 nm), i.e., pseudo-contacting interface, but it increases primarily with increasing root-mean-square (rms) surface height roughness between 2 and 4 nm, i.e., pseudo-flying interface. Also, increasing rms roughness and decreasing R, increases the contact force and mean contact pressure, while the same design decreases the friction force. As the directions of optimization for minimizing the individual interfacial forces are not the same, simultaneous optimization is required for a successful ultra-low flying HDI design.
机译:旨在达到Tbit / in {sup} 2数量级的极高面记录密度的低于5 nm飞行头-磁盘接口(HDI)易受强大的粘合力影响,这可能导致随后的接触,弹跳振动和高强度摩擦。有关界面力的准确预测可以帮助确保超低飞行HDI的成功实施。在这项研究中,开发了一种改进的粗糙表面模型,以估计与亚5 nm HDI相关的粘着力,接触力和摩擦力以及平均接触压力。将改进的模型应用于具有不同粗糙度和接触条件的四个不同的HDI,并将其与亚边界润滑粗糙表面模型进行了比较。结果发现,使用改进的模型可以更准确地预测主要经历弹塑性和塑性接触的HDI中的界面力,而在主要为弹性接触的情况下,两个模型给出的结果相似。然后,使用改进的模型来系统地研究粗糙度参数对界面力和平均接触压力(响应)的影响。使用完整的3 {sup} 3因子设计,通过一系列回归模型研究了响应的趋势。研究发现,当平均间距较小(≈0.5nm)(即伪接触界面)时,胶粘剂和净法向界面力随粗糙面平均半径R的增加而增加,但主要随均方根( rms)表面高度粗糙度介于2到4 nm之间,即伪飞行界面。同样,增加均方根粗糙度并减小R会增加接触力和平均接触压力,而相同的设计会减小摩擦力。由于最小化各个界面力的优化方向不同,因此成功的超低飞行HDI设计需要同时进行优化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号