...
首页> 外文期刊>Journal of Theoretical Biology >A mathematical model of Ca2+ dynamics in rat mesenteric smooth muscle cell: agonist and NO stimulation.
【24h】

A mathematical model of Ca2+ dynamics in rat mesenteric smooth muscle cell: agonist and NO stimulation.

机译:大鼠肠系膜平滑肌细胞Ca2 +动力学的数学模型:激动剂和NO刺激。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A mathematical model of calcium dynamics in vascular smooth muscle cell (SMC) was developed based on data mostly from rat mesenteric arterioles. The model focuses on (a) the plasma membrane electrophysiology; (b) Ca2+ uptake and release from the sarcoplasmic reticulum (SR); (c) cytosolic balance of Ca2+, Na+, K+, and Cl ions; and (d) IP3 and cGMP formation in response to norepinephrine(NE) and nitric oxide (NO) stimulation. Stimulation with NE induced membrane depolarization and an intracellular Ca2+ ([Ca2+]i) transient followed by a plateau. The plateau concentrations were mostly determined by the activation of voltage-operated Ca2+ channels. NE causes a greater increase in [Ca2+]i than stimulation with KCl to equivalent depolarization. Model simulations suggest that the effect of[Na+]i accumulation on the Na+/Ca2+ exchanger (NCX) can potentially account for this difference.Elevation of [Ca2+]i within a concentration window (150-300 nM) by NE or KCl initiated [Ca2+]i oscillations with a concentration-dependent period. The oscillations were generated by the nonlinear dynamics of Ca2+ release and refilling in the SR. NO repolarized the NE-stimulated SMC and restored low [Ca2+]i mainly through its effect on Ca2+-activated K+ channels. Under certain conditions, Na+-K+-ATPase inhibition can result in the elevation of [Na+]i and the reversal of NCX, increasing resting cytosolic and SR Ca2+ content, as well as reactivity to NE. Blockade of the NCX's reverse mode could eliminate these effects. We conclude that the integration of the selected cellular components yields a mathematical model that reproduces, satisfactorily, some of the established features of SMC physiology. Simulations suggest a potential role of intracellular Na+ in modulating Ca2+ dynamics and provide insights into the mechanisms of SMC constriction, relaxation, and the phenomenon of vasomotion. The model will provide the basis for the development of multi-cellular mathematical models that will investigate microcirculatory function in health and disease.
机译:基于主要来自大鼠肠系膜小动脉的数据,建立了血管平滑肌细胞(SMC)中钙动力学的数学模型。该模型着重于(a)质膜电生理学; (b)从肌浆网(SR)吸收和释放钙; (c)Ca2 +,Na +,K +和Cl离子的胞质平衡; (d)响应去甲肾上腺素(NE)和一氧化氮(NO)刺激而形成IP3和cGMP。 NE刺激引起的膜去极化和细胞内Ca2 +([Ca2 +] i)瞬变,随后趋于平稳。平台浓度主要由电压操纵的Ca2 +通道的激活决定。 NE导致[Ca2 +] i的增加大于用KCl刺激的等效去极化。模型模拟表明,[Na +] i积累对Na + / Ca2 +交换剂(NCX)的影响可能是造成这种差异的原因。NE或KCl引发的[Ca2 +] i在浓度范围(150-300 nM)内的升高[ Ca2 +] i振荡具有浓度依赖性的周期。振荡是由SR中Ca2 +释放和重新填充的非线性动力学产生的。 NO主要通过其对Ca2 +激活的K +通道的作用使NE刺激的SMC重新极化并恢复低[Ca2 +] i。在某些条件下,Na + -K + -ATPase抑制可导致[Na +] i升高和NCX逆转,从而增加静息胞质和SR Ca2 +含量,以及对NE的反应性。禁止NCX反向模式可以消除这些影响。我们得出结论,所选细胞成分的整合产生了一个数学模型,该模型令人满意地再现了SMC生理学的某些已建立特征。模拟表明细胞内Na +在调节Ca2 +动力学中的潜在作用,并为SMC收缩,松弛和血管舒张现象的机制提供了见识。该模型将为开发多细胞数学模型提供基础,该模型将研究健康和疾病中的微循环功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号