首页> 外文期刊>Journal of Theoretical Biology >A compartmental model for oxygen transport in brain microcirculation in the presence of blood substitutes.
【24h】

A compartmental model for oxygen transport in brain microcirculation in the presence of blood substitutes.

机译:在存在血液代用品的情况下,大脑微循环中氧气运输的区室模型。

获取原文
获取原文并翻译 | 示例
       

摘要

A compartmental model is developed for oxygen (O(2)) transport in brain microcirculation in the presence of blood substitutes (hemoglobin-based oxygen carriers). The cerebrovascular bed is represented as a series of vascular compartments, on the basis of diameters, surrounded by a tissue compartment. A mixture of red blood cells (RBC) and plasma/extracellular hemoglobin solution flows through the vascular bed from the arterioles through the capillaries to the venules. Oxygen is transported by convection in the vascular compartments and by diffusion in the surrounding tissue where it is utilized. Intravascular resistance and the diffusive loss of oxygen from the arterioles to the tissue are incorporated in the model. The model predicts that most of the O(2) transport occurs at the level of capillaries. Results computed from the present model in the presence of hemoglobin-based oxygen carriers are consistent with those obtained from the earlier validated model (Sharan et al., 1989, 1998a) on oxygen transport in brain circulation in the absence of extracellular hemoglobin. We have found that: (a) precapillary PO(2) gradients increase as PO(2) in the arterial blood increases, P(50 p) (oxygen tension at 50% saturation of hemoglobin with O(2) in plasma) decreases, i.e. O(2) affinity of the extracellular hemoglobin is increased, the flow rate of the mixture decreases, hematocrit decreases at constant flow, metabolic rate increases, and intravascular transport resistance in the arterioles is neglected; (b) precapillary PO(2) gradients are not sensitive to (i) intracapillary transport resistance, (ii) cooperativity (n(p)) of hemoglobin with oxygen in plasma, (iii) hemoglobin concentration in the plasma and (iv) hematocrit when accounting for viscosity variation in the flow; (c) tissue PO(2) is not sensitive to the variation of intravascular transport resistance in the arterioles. We also found that tissue PO(2) is a non-monotonic function of the Hill coefficient n(p) for the extracellular hemoglobin with a maximum occurring when n(p) equals the blood Hill coefficient. The results of the computations give estimates of the magnitudes of the increases in tissue PO(2) as arterial PO(2) increases,P(50 p) increases, flow rate increases, hematocrit increases, hemoglobin concentration in the plasma increases, metabolic rate decreases, the capillary mass transfer coefficient increases or the intracapillary transport resistance decreases.
机译:针对存在血液替代品(基于血红蛋白的氧气载体)的大脑微循环中的氧气(O(2))运输,开发了一种隔室模型。脑血管床被表示为一系列血管隔室,基于直径,被组织隔室包围。红细胞(RBC)和血浆/细胞外血红蛋白溶液的混合物从小动脉穿过毛细血管流向小静脉,穿过血管床。氧气通过对流在血管腔中以及通过扩散在周围组织中进行运输。将血管内阻力和氧气从小动脉到组织的扩散损失纳入模型中。该模型预测大多数O(2)传输发生在毛细管水平。在存在基于血红蛋白的氧气载体的情况下,根据本模型计算出的结果与从早期验证的模型(Sharan等人,1989,1998a)获得的关于在不存在细胞外血红蛋白的情况下脑循环中氧气运输的结果一致。我们发现:(a)毛细血管前PO(2)梯度随着动脉血中PO(2)的增加而增加,P(50 p)(血红蛋白与血浆中O(2)的饱和度为50%时的氧张力)降低,即细胞外血红蛋白的O(2)亲和力增加,混合物的流速降低,恒定流量下的血细胞比容降低,代谢率提高,而小动脉中的血管内运输阻力被忽略; (b)毛细血管前PO(2)梯度对(i)毛细血管内转运阻力,(ii)血红蛋白与血浆中氧气的协同作用(n(p)),(iii)血浆中血红蛋白浓度和(iv)血细胞比容不敏感考虑流量中的粘度变化时; (c)组织PO(2)对小动脉中血管内转运阻力的变化不敏感。我们还发现,组织PO(2)是细胞外血红蛋白的Hill系数n(p)的非单调函数,当n(p)等于血液Hill系数时出现最大值。计算结果给出了随动脉PO(2)增加,P(50 p)增加,流速增加,血细胞比容增加,血浆中血红蛋白浓度增加,代谢率增加而组织PO(2)增加的幅度的估计值减小,毛细管传质系数增加或毛细管内输送阻力减小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号