首页> 外文期刊>Journal of Theoretical Biology >Exploiting elasticity: Modeling the influence of neural control on mechanics and energetics of ankle muscle-tendons during human hopping
【24h】

Exploiting elasticity: Modeling the influence of neural control on mechanics and energetics of ankle muscle-tendons during human hopping

机译:利用弹性:模拟神经控制对跳动过程中踝部肌腱力学和能量的影响

获取原文
获取原文并翻译 | 示例
       

摘要

We present a simplified Hill-type model of the human triceps surae-Achilles tendon complex working on a gravitational-inertial load during cyclic contractions (i.e. vertical hopping). Our goal was to determine the role that neural control plays in governing muscle, or contractile element (CE), and tendon, or series elastic element (SEE), mechanics and energetics within a compliant muscle-tendon unit (MTU). We constructed a 2D parameter space consisting of many combinations of stimulation frequency and magnitude (i.e. neural control strategies). We compared the performance of each control strategy by evaluating peak force and average positive mechanical power output for the system (MTU) and its respective components (CE, SEE), force-length (F-L) and -velocity (F-V) operating point of the CE during active force production, average metabolic rate for the CE, and both MTU and CE apparent efficiency. Our results suggest that frequency of stimulation plays a primary role in governing whole-MTU mechanics. These include the phasing of both activation and peak force relative to minimum MTU length, average positive power, and apparent efficiency. Stimulation amplitude was primarily responsible for governing average metabolic rate and within MTU mechanics, including peak force generation and elastic energy storage and return in the SEE. Frequency and amplitude of stimulation both played integral roles in determining CE F-L operating point, with both higher frequency and amplitude generally corresponding to lower CE strains, reduced injury risk, and elimination of the need for passive force generation in the CE parallel elastic element (PEE). (C) 2014 Elsevier Ltd. All rights reserved.
机译:我们提出了在循环收缩(即垂直跳动)过程中在重力-惯性载荷下工作的人类肱三头肌腓肠肌-跟腱复合体的简化Hill型模型。我们的目标是确定神经控制在顺应性肌腱单元(MTU)内控制肌肉或收缩元件(CE),肌腱或系列弹性元件(SEE),力学和能量学中的作用。我们构建了一个二维参数空间,其中包含刺激频率和幅度的许多组合(即神经控制策略)。我们通过评估系统(MTU)及其相应组件(CE,SEE),力长(FL)和-VVE(FV)工作点的峰值力和平均正机械输出功率来比较每种控制策略的性能主动力产生期间的CE,CE的平均代谢率以及MTU和CE的表观效率。我们的结果表明刺激频率在控制整个MTU力学中起主要作用。这些包括相对于最小MTU长度,平均正功率和视在效率而言,激活和峰值力的相位。刺激幅度主要负责控制平均代谢率,并在MTU力学范围内,包括峰值力的产生以及弹性能量的存储和在SEE中的返回。刺激的频率和幅度都在确定CE FL工作点中起着不可或缺的作用,较高的频率和幅度通常对应于较低的CE应变,降低了受伤风险,并且消除了CE平行弹性元件(PEE)中产生被动力的需要)。 (C)2014 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号