...
首页> 外文期刊>Journal of the Royal Society Interface >Prediction of fracture healing under axial loading, shear loading and bending is possible using distortional and dilatational strains as determining mechanical stimuli
【24h】

Prediction of fracture healing under axial loading, shear loading and bending is possible using distortional and dilatational strains as determining mechanical stimuli

机译:可以使用变形和膨胀应变作为确定机械刺激来预测轴向载荷,剪切载荷和弯曲下的骨折愈合

获取原文
获取原文并翻译 | 示例
           

摘要

Numerical models of secondary fracture healing are based on mechanoregu-latory algorithms that use distortional strain alone or in combination with either dilatational strain or fluid velocity as determining stimuli for tissue differentiation and development. Comparison of these algorithms has previously suggested that healing processes under torsional rotational loading can only be properly simulated by considering fluid velocity and deviatoric strain as the regulatory stimuli. We hypothesize that sufficient calibration on uncertain input parameters will enhance our existing model, which uses distortional and dilatational strains as determining stimuli, to properly simulate fracture healing under various loading conditions including also torsional rotation. Therefore, we minimized the difference between numerically simulated and experimentally measured courses of interfragmentary movements of two axial compressive cases and two shear load cases (torsional and trans-lational) by varying several input parameter values within their predefined bounds. The calibrated model was then qualitatively evaluated on the ability to predict physiological changes of spatial and temporal tissue distributions, based on respective in vivo data. Finally, we corroborated the model on five additional axial compressive and one asymmetrical bending load case. We conclude that our model, using distortional and dilatational strains as determining stimuli, is able to simulate fracture-healing processes not only under axial compression and torsional rotation but also under translational shear and asymmetrical bending loading conditions.
机译:二次骨折愈合的数值模型基于机械调节算法,该算法单独使用变形应变,或者结合扩张应变或流体速度来确定组织分化和发育的刺激。这些算法的比较以前表明,在扭转旋转载荷下的愈合过程只能通过将流体速度和偏应变作为调节刺激来正确模拟。我们假设对不确定的输入参数进行充分的校准会增强我们现有的模型,该模型使用变形和膨胀应变作为确定刺激,以正确模拟各种载荷条件(包括扭转旋转)下的骨折愈合。因此,我们通过在预定义的范围内改变几个输入参数值,最小化了两个轴向压缩工况和两个剪切载荷工况(扭转和平移)的碎片运动的数值模拟和实验测量过程之间的差异。然后基于各自的体内数据,定性评估校准模型的预测空间和时间组织分布的生理变化的能力。最后,我们在另外五个轴向压缩和一个非对称弯曲载荷情况下证实了该模型。我们得出的结论是,我们的模型使用变形和膨胀应变作为确定刺激,不仅能够模拟轴向压缩和扭转旋转,还可以模拟平移剪切和非对称弯曲载荷条件下的骨折愈合过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号