首页> 外文期刊>Journal of the Optical Society of America, A. Optics, image science, and vision >Pulsed-beam propagation in lossless dispersive media. I. Theory
【24h】

Pulsed-beam propagation in lossless dispersive media. I. Theory

机译:脉冲光束在无损分散介质中的传播。一,理论

获取原文
获取原文并翻译 | 示例
           

摘要

This first part of a two-part investigation is concerned with the effects of dispersion on the propagation characteristics of the scalar field associated with a highly localized pulsed-beam (PB) wave packet in a lossless homogeneous medium described by the generic wave-number profile k(ω) = ω/c(ω), where c(ω) is the frequency-dependent wave propagation speed. While comprehensive studies have been performed for the one-dimensional problem of pulsed plane-wave propagation in dispersive media, particularly for specific c(ω) profiles of the Lorentz or Debye type, even relatively crude measures tied to generic k (ω) profiles do not appear to have been obtained for the three-dimensional problem associated with a PB wave packet with complex frequency and wave-number spectral constituents. Such wave packets have been well explored in nondispersive media, and simple asymptotic expressions have been obtained in the paraxial range surrounding the beam axis. These para:dally approximated wave objects are now used to formulate the initial conditions for the lossless generic k(ω) dispersive case. The resulting frequency inversion integral is reduced by simple saddlepoint asymptotics to extract the PB henomenology in the well-developed dispersive regime. The phenomenology of the transient field is parameterized in terms of the space-time evolution of the PB wave-front curvature, spatial and temporal beam width, etc., as well as in terms of the corresponding space-time-dependent frequencies of the signal, which are related to the local geometrical properties of the k(ω) dispersion surface. These individual parameters are then combined to form nondimensional critical parameters that quantify the effect of dispersion within the space-time range of validity of the paraxial PB. One does this by performing higher-order asymptotic expansions beyond the paraxial range and then ascertaining the conditions for which the higher-order terms can be neglected, In Part II[J. Opt. Soc. Am. A 15, 1276 (1996)], these studies are extended to include the transitional regime at those early observation times for which dispersion is not yet fully developed. Also included in Part H are analytical and numerical results for a simple Lorentz model that. permit assessment of the performance of various nondimensional critical estimators. # 1998 Optical Society of America [S0740-3232(98)02805-1] OCIS codes: 260.2030, 050.1940 ,270.5530, 350.5500.
机译:由两部分组成的研究的第一部分涉及色散对与由通用波数分布描述的无损均质介质中的高局部脉冲光束(PB)波包相关的标量场传播特性的影响k(ω)=ω/ c(ω),其中c(ω)是随频率变化的波传播速度。尽管已经对分散介质中脉冲平面波的一维问题进行了全面研究,尤其是对于洛伦兹或德拜类型的特定c(ω)剖面,但即使是与通用k(ω)剖面相关的相对粗略的度量也可以对于具有复杂频率和波数频谱成分的PB波包所涉及的三维问题,似乎尚未获得。在非色散介质中已经很好地研究了这种波包,并且在围绕光束轴的近轴范围中获得了简单的渐近表达式。这些对偶近似波对象现在用于为无损通用k(ω)色散情况制定初始条件。通过简单的鞍点渐近线可以减少由此产生的频率积分,以提取发达的分散状态下的PB现象学。瞬态场的现象学是根据PB波前曲率的时空演变,空间和时间波束宽度等参数以及信号的时空相关频率来参数化的,这与k(ω)色散表面的局部几何特性有关。然后将这些单独的参数组合起来以形成无量纲的关键参数,这些参数可以量化近轴PB有效性的时空范围内的色散影响。通过执行超出近轴范围的高阶渐近展开,然后确定在第二部分中可以忽略高阶项的条件,可以做到这一点。选择。 Soc。上午。 [15,1276(1996)],这些研究扩展到包括那些尚未充分发展分散的早期观测时期的过渡时期。在H部分中还包括一个简单的Lorentz模型的分析和数值结果。允许评估各种无量纲关键估计器的性能。 #1998美国光学学会[S0740-3232(98)02805-1] OCIS代码:260.2030、050.1940、270.5530、350.5500。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号