...
首页> 外文期刊>Biophysical Journal >Kinesin-5 allosteric inhibitors uncouple the dynamics of nucleotide, microtubule, and neck-linker binding sites
【24h】

Kinesin-5 allosteric inhibitors uncouple the dynamics of nucleotide, microtubule, and neck-linker binding sites

机译:Kinesin-5变构抑制剂可消除核苷酸,微管和颈部连接位点结合位点的动力学

获取原文
获取原文并翻译 | 示例

摘要

Kinesin motor domains couple cycles of ATP hydrolysis to cycles of microtubule binding and conformational changes that result in directional force and movement on microtubules. The general principles of this mechanochemical coupling have been established; however, fundamental atomistic details of the underlying allosteric mechanisms remain unknown. This lack of knowledge hampers the development of new inhibitors and limits our understanding of how disease-associated mutations in distal sites can interfere with the fidelity of motor domain function. Here, we combine unbiased molecular-dynamics simulations, bioinformatics analysis, and mutational studies to elucidate the structural dynamic effects of nucleotide turnover and allosteric inhibition of the kinesin-5 motor. Multiple replica simulations of ATP-, ADP-, and inhibitor-bound states together with network analysis of correlated motions were used to create a dynamic protein structure network depicting the internal dynamic coordination of functional regions in each state. This analysis revealed the intervening residues involved in the dynamic coupling of nucleotide, microtubule, neck-linker, and inhibitor binding sites. The regions identified include the nucleotide binding switch regions, loop 5, loop 7, ?-?-loop 13, ?, and ?-?-?. Also evident were nucleotide- and inhibitor-dependent shifts in the dynamic coupling paths linking functional sites. In particular, inhibitor binding to the loop 5 region affected ?sheet residues and ?, leading to a dynamic decoupling of nucleotide, microtubule, and neck-linker binding sites. Additional analyses of point mutations, including P131 (loop 5), Q78/I79 (?), E166 (loop 7), and K272/I273 (?) G325/G326 (loop 13), support their predicted role in mediating the dynamic coupling of distal functional surfaces. Collectively, our results and approach, which we make freely available to the community, provide a framework for explaining how binding events and point mutations can alter dynamic couplings that are critical for kinesin motor domain function.
机译:驱动蛋白运动结构域将ATP水解的循环与微管结合和构象变化的循环耦合,从而导致微管上的定向力和运动。已经建立了这种机械化学耦合的一般原理。然而,潜在的变构机制的基本原子细节仍然未知。缺乏知识阻碍了新抑制剂的开发,并限制了我们对远端部位疾病相关突变如何干扰运动域功能保真度的理解。在这里,我们结合无偏的分子动力学模拟,生物信息学分析和突变研究,以阐明核苷酸更新和驱动蛋白5的变构抑制的结构动力学效应。 ATP,ADP和抑制剂结合状态的多重复制模拟以及相关运动的网络分析被用来创建一个动态蛋白质结构网络,描绘每个状态下功能区域的内部动态协调。该分析揭示了介入核苷酸,微管,颈部接头和抑制剂结合位点动态偶联的中间残基。鉴定出的区域包括核苷酸结合开关区,环5,环7,α-β-环13,α和α-β-β。同样明显的是在连接功能位点的动态偶联路径中核苷酸和抑制剂依赖性的转变。特别是,抑制剂与环5区域的结合会影响β折叠残基和β,导致核苷酸,微管和颈部连接位点的动态去偶联。对点突变的其他分析,包括P131(循环5),Q78 / I79(循环),E166(循环7)和K272 / I273(循环)G325 / G326(循环13),支持了它们在介导动态偶联中的预测作用远端功能表面。集体地,我们免费提供给社区的结果和方法为解释结合事件和点突变如何改变对驱动蛋白运动域功能至关重要的动态偶联提供了一个框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号