首页> 外文期刊>Biophysical Journal >Differences in allosteric communication pipelines in the inactive and active states of a GPCR
【24h】

Differences in allosteric communication pipelines in the inactive and active states of a GPCR

机译:GPCR无效和活跃状态下的变构通讯管道中的差异

获取原文
获取原文并翻译 | 示例
           

摘要

G-protein-coupled receptors (GPCRs) are membrane proteins that allosterically transduce the signal of ligand binding in the extracellular (EC) domain to couple to proteins in the intracellular (IC) domain. However, the complete pathway of allosteric communication from the EC to the IC domain, including the role of individual amino acids in the pathway is not known. Using the correlation in torsion angle movements calculated from microseconds-long molecular-dynamics simulations, we elucidated the allosteric pathways in three different conformational states of β2-adrenergic receptor (β2AR): 1), the inverse-agonist-bound inactive state; 2), the agonist-bound intermediate state; and (3), the agonist- and G-protein-bound fully active state. The inactive state is less dynamic compared with the intermediate and active states, showing dense clusters of allosteric pathways (allosteric pipelines) connecting the EC with the IC domain. The allosteric pipelines from the EC domain to the IC domain are weakened in the intermediate state, thus decoupling the EC domain from the IC domain and making the receptor more dynamic compared with the other states. Also, the orthosteric ligand-binding site becomes the initiator region for allosteric communication in the intermediate state. This finding agrees with the paradigm that the nature of the agonist governs the specific signaling state of the receptor. These results provide an understanding of the mechanism of allosteric communication in class A GPCRs. In addition, our analysis shows that mutations that affect the ligand efficacy, but not the binding affinity, are located in the allosteric pipelines. This clarifies the role of such mutations, which has hitherto been unexplained.
机译:G蛋白偶联受体(GPCR)是一种膜蛋白,可以变构地转导细胞外(EC)域中配体结合的信号,从而与细胞内(IC)域中的蛋白偶联。但是,尚不知道从EC到IC域的变构通讯的完整途径,包括单个氨基酸的作用。使用由微秒级的分子动力学模拟计算出的扭转角运动的相关性,我们阐明了β2-肾上腺素能受体(β2AR)三种不同构象状态的变构途径:1)激动剂结合的非活性状态; 2),激动剂结合的中间状态; (3)激动剂和G蛋白结合的完全活性状态。与中间状态和活动状态相比,非活动状态的动态性较低,显示了将EC与IC域连接的变构路径(变构管道)的密集簇。从EC域到IC域的变构管线在中间状态下会减弱,从而使EC域与IC域解耦,并使受体比其他状态更具活力。同样,正构配体结合位点在中间状态成为变构通讯的引发剂区域。这一发现与范式有关,即激动剂的性质决定着受体的特定信号传导状态。这些结果提供了对A类GPCR中的变构通讯机制的理解。此外,我们的分析表明,影响配体功效而不影响结合亲和力的突变位于变构管线中。这阐明了迄今无法解释的这种突变的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号