首页> 外文期刊>Journal of the mechanical behavior of biomedical materials >Identification of couple-stress moduli of vertebral trabecular bone based on the 3D internal architectures
【24h】

Identification of couple-stress moduli of vertebral trabecular bone based on the 3D internal architectures

机译:基于3D内部结构的椎骨小梁骨耦合应力模量识别

获取原文
获取原文并翻译 | 示例
       

摘要

The purpose of this paper is to develop a homogeneous, orthotropic couple-stress continuum model as a substitute of the 3D periodic heterogeneous cellular solid model of vertebral trabecular bone. Vertebral trabecular bone is modeled as a porous material with an idealized periodic structure made of 3D open cubic cells, which is effectively orthotropic. The chosen architecture is based on studies of samples taken from the central part of vertebral bodies. The effective properties are obtained based on the response of the representative volume element under prescribed boundary conditions. Mixed boundary conditions comprising both traction and displacement boundary conditions are applied on the structure boundaries. In this contribution, the effective mechanical constants of the effective couple-stress continuum are deduced by an equivalent strain energy method. The characteristic lengths for bending and torsion are identified from the resulting homogenized orthotropic moduli. We conduct this study computationally using a finite element approach. Vertebral trabecular bone is modeled either as a cellular solid or as a two-phase material consisting of bone tissue (stiff phase) forming a trabecular network, and a surrounding soft tissue referring to the bone marrow present in the pores. Both the bone tissue forming the network and the pores are assumed to be homogeneous linear elastic, and isotropic media. The scale effects on the predicted couple stress moduli of these networks are investigated by varying the size of the bone specimens over which the boundary conditions are applied. The analysis using mixed boundary conditions gives results that are independent of unit cell size when computing the first couple stress tensor, while it is dependent on the cell size as to the second couple stress tensor moduli. This study provides overall guidance on how the size of the trabecular specimen influence couple stresses elastic moduli of cellular materials, with focus on bones. The developed approach is quite general and applicable to any heterogeneous cellular and composite materials. (C) 2015 Elsevier Ltd. All rights reserved.
机译:本文的目的是开发一个均匀的正交各向异性偶应力连续体模型,以替代椎骨小梁骨的3D周期性异质细胞实体模型。椎骨小梁骨被建模为具有理想的周期性结构的多孔材料,该理想的周期性结构由3D开放立方晶胞构成,并具有正交各向异性。选择的架构基于对椎体中央部分样本的研究。根据在规定的边界条件下代表性体积元素的响应获得有效特性。在结构边界上应用包括牵引和位移边界条件的混合边界条件。在这一贡献中,有效耦合应力连续体的有效机械常数通过等效应变能法推导。弯曲和扭转的特征长度从产生的均质正交各向异性模量中确定。我们使用有限元方法以计算方式进行这项研究。椎骨小梁骨可以建模为细胞固体,也可以建模为两相材料,包括形成小梁网络的骨组织(硬质相)和周围的软组织(指存在于孔中的骨髓)。假定形成网络的骨组织和孔均是均质的线性弹性和各向同性的介质。通过改变施加边界条件的骨骼样本的尺寸,研究了对这些网络的预测耦合应力模量的尺度效应。使用混合边界条件进行的分析得出的结果与计算第一个耦合应力张量时的晶胞大小无关,而它取决于第二个耦合应力张量模量的晶胞大小。这项研究为骨小梁的大小如何影响耦合应力对细胞材料的弹性模量提供了总体指导,重点是骨骼。所开发的方法是相当通用的,并且适用于任何异质的细胞和复合材料。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号