...
首页> 外文期刊>Journal of the European Ceramic Society >A computational analysis of a ZrO_2- SiO_2 scale for a ZrB_2- ZrC-Zr ultrahigh temperature ceramic composite system
【24h】

A computational analysis of a ZrO_2- SiO_2 scale for a ZrB_2- ZrC-Zr ultrahigh temperature ceramic composite system

机译:ZrB_2-ZrC-Zr超高温陶瓷复合体系ZrO_2-SiO_2氧化皮的计算分析

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The success of a ceramic composite for ultrahigh temperatures (i.e., >1873 K) in an oxidizing atmosphere resides in the protective characteristicsof a scale to limit oxygen ingress or to control the oxygen reaction into the substrate. With temperature changes from room temperature to ultrahightemperatures, the mechanics of the scale and its reactivity becomes critical for ceramic composites to operate under extreme environments. A studywas pursued to design computationally a SiO_2-ZrO_2 scale for a ZrB_2/ZrC/Zr-Si composite by using conventional finite element analysis, whichwas used as a baseline microstructure for the extended finite element method. The model of the Zr boride/carbide composite with a SiO_2/ZrO_2/ZrSi_x scale simulates the development of local strain energetics under a thermal load from 300 to 1700 K. The computational analysis determined thatthe size of the SiO_2 and ZrSi_x precipitates does not appreciably influence the durability of the microstructure. A simulated annealing optimizationalgorit as also developed for an extended finite element program (called XMicro) with the purpose of optimizing the auto re-meshing of XMicro and thus minimizing its combinatorial selection of a composites reinforcement architecture. After correcting for the overlapping of ZrO_2 precipitates within a matrix, XMicro determined that 1.96 p m as the optimal spacing of precipitates within a cluster and 20 u m between clusters within a silica matrix of the scale interphase. The strategic experimentation determined that porosity developed during oxidation should be incorporated into the simulation of a ceramic composite. To probe into the efficacy of the silica layer for the scale, oxidizing experiments were performed at 1973 K, as well as microstructural analysis of the scale interphase. The computational mechanics coupled with onsideration of the thermodynamic stability of phases for the Zr-Si-O system to set the oxygen potentials between layers can design a scale interphase for an ultrahigh-temperature, ceramic composite system. The processing challenge would be to attain the optimal configuration of the microstructure, for example, silicide precipitates developed with the appropriate spacing along a scale/matrix interface or ZrO_2 clusters within a silicate phase.
机译:在氧化气氛中用于超高温(即> 1873K)的陶瓷复合材料的成功在于鳞片的保护特性,以限制氧气进入或控制氧气向基材的反应。随着温度从室温变化到超高温,氧化皮的力学性能及其反应性对于陶瓷复合材料在极端环境下的运行至关重要。进行了一项研究,以通过使用常规有限元分析计算设计ZrB_2 / ZrC / Zr-Si复合材料的SiO_2-ZrO_2标度,并将其用作扩展有限元方法的基线微观结构。 SiO_2 / ZrO_2 / ZrSi_x比例的Zr硼化物/碳化物复合材料模型模拟了在300至1700 K的热负荷下局部应变能的发展。计算分析确定SiO_2和ZrSi_x沉淀物的尺寸不会显着影响微观结构的耐久性。还为扩展的有限元程序(称为XMicro)开发了模拟退火优化算法,目的是优化XMicro的自动重新网格化,从而最小化其对复合材料增强结构的组合选择。校正了基质中ZrO_2沉淀物的重叠后,XMicro确定了1.96 pm是团簇内沉淀物的最佳间距,鳞片界面相的二氧化硅基质中团簇之间的最佳间距为20 um。战略性实验确定,氧化过程中产生的孔隙率应纳入陶瓷复合材料的模拟中。为了探究二氧化硅层对水垢的功效,在1973 K进行了氧化实验,并对水垢界面进行了微结构分析。计算力学与Zr-Si-O系统各相之间热力学稳定性的补充(用于设置各层之间的氧势)可以为超高温陶瓷复合系统设计鳞片相。加工上的挑战将是获得微观结构的最佳配置,例如,沿着硅酸盐相内的鳞片/基体界面或ZrO_2团簇以适当的间距形成的硅化物沉淀物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号