首页> 外文期刊>Journal of the Atmospheric Sciences >A New Generic Method for Quantifying the Scale Predictability of the Fractal Atmosphere: Applications to Model Verification
【24h】

A New Generic Method for Quantifying the Scale Predictability of the Fractal Atmosphere: Applications to Model Verification

机译:一种量化分形大气尺度可预测性的通用方法:在模型验证中的应用

获取原文
获取原文并翻译 | 示例
       

摘要

The authors revisit the issue regarding the predictability of a flow that possesses many scales of motion raised by Lorenz in 1969 and apply the general systems theory developed by Selvam in 1990 to error diagnostics and the predictability of the fractal atmosphere. They then introduce a new generic method to quantify the scale predictability of the fractal atmosphere following the assumptions of the intrinsic inverse power law and the upscale cascade of error. The eddies (of all scales) are extracted against the instant zonal mean, and the ratio of noise (i.e., the domain-averaged square of error amplitudes) to signal (i.e., the domain-averaged square of total eddy amplitudes), referred to as noise-to-signal ratio (NSR), is defined as a measure of forecast skill. The time limit of predictability t(km) for any wavenumber k(m) = phi(m-1) can be determined by the criterion NSR(t(km)) = phi(-2m+2) = k(m)(-2) or by the criterion log(phi)[NSR(t(km))] = -2m + 2 = log phi(k(m)(-2)), where phi = (1 + root 5)/2 = 1.618 033 9887 ... is the golden ratio and m is a scale index. The NSR is flow adaptive, bias aware, and stable in variation (in a logarithm transformation), and it offers unique advantages for model verification, allowing evaluation of different model variables, regimes, and scales in a consistent manner. In particular, an important advantage of this NSR method over the widely used anomaly correlation coefficient (ACC) method is that it could detect the successive scale predictability of different wavenumbers without the need to explicitly perform scale decomposition. As a demonstration, this new NSR method is used to examine the scale predictability of the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) 500-hPa geopotential height.
机译:作者重新审视了由洛伦兹(Lorenz)在1969年提出的具有多种运动尺度的流动的可预测性的问题,并将赛尔瓦姆(Selvanm)在1990年提出的一般系统理论应用于错误诊断和分形大气的可预测性。然后,他们引入了一种新的通用方法,根据固有逆幂定律和误差的高级级联假设来量化分形大气的尺度可预测性。相对于瞬时区域平均值,提取(所有尺度的)涡流,以及噪声(即,误差幅度的域平均平方)与信号的比率(即,总涡流幅度的域平均平方)。信噪比(NSR)被定义为预测技能的量度。任何波数k(m)= phi(m-1)的可预测性t(km)的时限可以通过标准NSR(t(km))= phi(-2m + 2)= k(m)( -2)或标准log(phi)[NSR(t(km))] = -2m + 2 =对数phi(k(m)(-2)),其中phi =(1 +根5)/ 2 = 1.618 033 9887 ...是黄金比例,m是比例指数。 NSR具有流量自适应性,偏差感知性和变化稳定性(对数转换),并且为模型验证提供了独特的优势,允许以一致的方式评估不同的模型变量,状态和比例。尤其是,与广泛使用的异常相关系数(ACC)方法相比,此NSR方法的重要优势在于它可以检测不同波数的连续尺度可预测性,而无需明确执行尺度分解。作为演示,此新的NSR方法用于检查国家环境预测中心(NCEP)全球预报系统(GFS)500-hPa地势高度的规模可预测性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号