首页> 外文学位 >Application of a Validation/Uncertainty Quantification (VUQ) Methodology at Two Scales: From Modeling of Char Oxidation to Simulation of a 1.5MW Coal-Fired Furnace
【24h】

Application of a Validation/Uncertainty Quantification (VUQ) Methodology at Two Scales: From Modeling of Char Oxidation to Simulation of a 1.5MW Coal-Fired Furnace

机译:验证/不确定性量化(VUQ)方法在两个尺度上的应用:从炭氧化模型到模拟1.5MW燃煤炉的模拟

获取原文
获取原文并翻译 | 示例

摘要

This dissertation presents two validation/uncertainty quantification (VUQ) studies, one on the 1.5 MWth coal fired furnace (L1500) and the other on the Reacting Particle and Boundary Layer (RPBL) char oxidation model. A six-step methodology is used in both cases.;In Chapters 2 and 3, the VUQ for the L1500 furnace is presented; the quantities of interest (QOIs) are the heat removal by the cooling tubes and the wall temperature. In Chapter 2, the Arches simulation of the L1500 base case is described in detail. From the simulation, two models that impact the QOIs are selected for further analysis, the ash deposition model and the char oxidation model. An input and uncertainty (I/U) map is created from the parameters in these models and a sensitivity analysis is performed with the five parameters that have the greatest impact on the QOIs. From the sensitivity analysis, two parameters (thermal conductivity of the deposit and wall emissivity) are chosen for the next steps in the VUQ cycle. In Chapter 3, an updated version of the I/U map with two additional parameters, the coal feed rate and the swirl factor (this factor varies the tangential component of the velocity), is presented. The thermal conductivity of the deposit and wall emissivity are combined into one parameter, the effective thermal conductivity. These three active parameters are then used in the consistency analysis. The experimental uncertainty of the QOIs is estimated by adding the sampling and the systematic errors. Data collection for the simulation is done with 34 cases obtained by varying the three active parameters. For each experimental QOI, a Gaussian process (GP) surrogate model is built from the set of simulation data. The consistency analysis is performed with the GP surrogate models and the QOIs with their estimated uncertainties; consistency is achieved. Chapter 3 concludes with recommendations for reducing the uncertainty in the experimental measurements and a review of model assumptions.;In Chapters 4 and 5, the VUQ for the RPBL model is presented; the QOIs are the particle temperature and velocity. In Chapter 4, the RPBL model formulation and the associated I/U map are given. One case is presented and explained in detail. A sensitivity analysis with nine parameters from the I/U map is performed, and five parameters (dp,&phis;initial, Yc, epsilon p, and rinf/rp) are selected for the next steps. In Chapter 5, the priorities of the parameters in the I/U map are updated using the results from sensitivity analysis. To compute the experimental uncertainty associated with the QOIs, the main contribution is assumed to be the sampling error. The RPBL model is run with the five parameters to produce simulation data. A polynomial chaos (PC) surrogate model is built for the set of simulation data corresponding to each experimental QOI. The consistency analysis is performed with the PC surrogate models and the QOIs with their estimated uncertainties. Consistency is found for three different types of char and six different particle size ranges in two O2 environments, each with 6-14 QOIs. To conclude, Chapter 5 reviews the experimental measurements, analyzes what is learned about the parameters in the consistency analysis, and revisits the assumptions made in the RPBL formulation.
机译:本文提出了两项​​验证/不确定度定量研究(VUQ),一项是在1.5 MWth燃煤炉(L1500)上,另一项是在反应粒子和边界层(RPBL)炭氧化模型上进行的。在这两种情况下都使用六步方法。在第二章和第三章中,介绍了L1500炉的VUQ。感兴趣的数量(QOI)是冷却管的散热量和壁温。在第2章中,将详细介绍L1500基本案例的Arches仿真。从仿真中,选择了影响QOI的两个模型进行进一步分析,包括灰分沉积模型和炭氧化模型。根据这些模型中的参数创建输入和不确定性(I / U)图,并使用对QOI影响最大的五个参数执行灵敏度分析。从灵敏度分析中,为VUQ循环的下一步选择了两个参数(沉积物的热导率和壁发射率)。在第3章中,将介绍I / U映射的更新版本,其中包含两个附加参数,即煤进给速率和旋流因子(该因子会改变速度的切向分量)。沉积物的热导率和壁的发射率合并为一个参数,即有效热导率。然后将这三个活动参数用于一致性分析。通过将采样和系统误差相加,可以估算出QOI的实验不确定性。通过改变三个活动参数获得的34个案例完成了用于模拟的数据收集。对于每个实验QOI,都会从一组模拟数据中建立一个高斯过程(GP)替代模型。使用GP代理模型和QOI及其估计的不确定性进行一致性分析;实现一致性。第三章以减少实验测量不确定度的建议和对模型假设的回顾作为结束。在第四章​​和第五章中,提出了RPBL模型的VUQ。 QOI是粒子的温度和速度。在第4章中,给出了RPBL模型公式和相关的I / U映射。提出并详细解释了一种情况。从I / U映射中使用9个参数进行灵敏度分析,并为接下来的步骤选择5个参数(dp,&初始值,Yc,εp和rinf / rp)。在第5章中,使用灵敏度分析的结果来更新I / U映射中参数的优先级。为了计算与QOI相关的实验不确定性,假定主要贡献是采样误差。 RPBL模型使用五个参数运行以生成仿真数据。针对与每个实验QOI对应的一组模拟数据,建立了多项式混沌(PC)替代模型。使用PC代理模型和QOI及其估计的不确定性进行一致性分析。在两种O2环境中,每种具有6-14个QOI,在三种不同类型的炭和六种不同的粒径范围内发现了一致性。总而言之,第5章回顾了实验测量,分析了一致性分析中有关参数的知识,并重新审视了RPBL公式中的假设。

著录项

  • 作者

    Diaz Ibarra, Oscar Homero.;

  • 作者单位

    The University of Utah.;

  • 授予单位 The University of Utah.;
  • 学科 Chemical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号