【24h】

Computational models of transcranial direct current stimulation.

机译:经颅直流电刺激的计算模型。

获取原文
获取原文并翻译 | 示例
       

摘要

During transcranial direct current stimulation (tDCS), controllable dose parameters are electrode number (typically 1 anode and 1 cathode), position, size, shape, and applied electric current. Because different electrode montages result in distinct brain current flow patterns across the brain, tDCS dose parameters can be adjusted, in an application-specific manner, to target or avoid specific brain regions. Though the tDCS electrode montage often follows basic rules of thumb (increased/decreased excitability "under" the anode/cathode electrode), computational forward models of brain current flow provide more accurate insight into detailed current flow patterns and, in some cases, can even challenge simplified electrode-placement assumptions. With the increased recognized value of computational forward models in informing tDCS montage design and interpretation of results, there have been recent advances in modeling tools and a greater proliferation of publications.? In addition, the importance of customizing tDCS for potentially vulnerable populations (eg, skull defects, brain damage/stroke, and extremes of age) can be considered. Finally, computational models can be used to design new electrode montages, for example, to improve spatial targeting such as high-definition tDCS. Pending further validation and dissemination of modeling tools, computational forward models of neuromodulation will become standard tools to guide the optimization of clinical trials and electrotherapy.
机译:在经颅直流电刺激(tDCS)期间,可控制的剂量参数为电极数(通常为1个阳极和1个阴极),位置,大小,形状和施加的电流。由于不同的电极蒙太奇会导致整个大脑的脑电流模式不同,因此可以以特定于应用的方式调整tDCS剂量参数,以靶向或避免特定的大脑区域。尽管tDCS电极蒙太奇通常遵循基本的经验法则(“在阳极/阴极电极下方”增加/减少的兴奋性),但是脑电流的计算正向模型可以提供对详细电流模式的更准确的洞察力,在某些情况下甚至可以挑战简化的电极放置假设。随着计算前向模型在通知tDCS蒙太奇设计和结果解释方面的公认价值不断提高,建模工具方面的最新进展以及出版物的大量涌现。此外,可以考虑为潜在的脆弱人群(例如颅骨缺损,脑损伤/中风和年龄极端)定制tDCS的重要性。最后,计算模型可用于设计新的电极蒙太奇,例如,以改善空间目标,例如高清tDCS。在进一步验证和推广建模工具之前,神经调节的正向计算模型将成为指导临床试验和电疗法优化的标准工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号