首页> 外文期刊>Journal of Rheology >Modeling hydrodynamic interaction in Brownian dynamics: Simulations of extensional and shear flows of dilute solutions of high molecular weight polystyrene
【24h】

Modeling hydrodynamic interaction in Brownian dynamics: Simulations of extensional and shear flows of dilute solutions of high molecular weight polystyrene

机译:布朗动力学中的流体动力学相互作用建模:高分子量聚苯乙烯稀溶液的拉伸和剪切流模拟

获取原文
获取原文并翻译 | 示例
           

摘要

The nonlinear transient extensional and steady-state shear theological properties of dilute polystyrene solutions of molecular weight 3.9 and 10.2 million in a theta solvent are predicted using Brownian dynamics (BD) simulations with the bead-spring model. Full hydrodynamic interaction is incorporated into BD simulations using the Rotne-Prager tensor. The hydrodynamic interaction parameter h* is obtained a priori by matching the drag force from a fully extended bead-spring model in extensional flow with that from Batchelor's theory for a cylindrical rod [Hsieh et al. (2003)]. The agreement between experimental data [Gupta et al. (2000)] and simulation results for the transient Trouton ratio versus strain is good from low to medium strains. However, the plateaus at high strains predicted by the simulations are higher than measured. We also find that hydrodynamic interaction hinders the unraveling of a polymer chain in strong extensional flow (Wi much greater than 1) due to the hydrodynamic clustering of beads. In steady shear flows, the combination of hydrodynamic interaction and finite spring extensibility results in a shear-thinning-thickening-thinning behavior with an increasing shear rate. For polystyrene of molecular weight 3.9 million, the simulated first normal stress coefficient does not quantitatively match the experimental results, in part because the number of beads N required to represent the hydrodynamic interactions accurately exceeds N = 300, which is much higher than we can afford to use, namely N = 80. We also predict a negative value of the second normal stress coefficient. (C) 2004 The Society of Rheology.
机译:使用棕珠动力学模型,通过布朗动力学(BD)模拟,预测了在theta溶剂中分子量分别为3.9和1,020万的稀聚苯乙烯溶液的非线性瞬态拉伸和稳态剪切流变学特性。使用Rotne-Prager张量将完整的水动力相互作用纳入BD模拟。流体动力学的相互作用参数h *是通过使完全伸展的珠-弹簧模型在拉力作用下的拉力与Batchelor的圆柱杆理论的拉力相匹配而预先获得的[Hsieh等。 (2003)]。实验数据之间的一致性[Gupta等。 (2000)],从低应变到中等应变,瞬态特劳顿比与应变的模拟结果都很好。但是,通过模拟预测的高应变下的平稳期高于实测值。我们还发现,由于珠的流体动力聚集,流体动力相互作用阻碍了聚合物链在强延伸流中的解链(Wi大于1)。在稳定的剪切流中,流体动力相互作用和有限的弹簧可扩展性的组合导致剪切变稀-变薄-稀疏行为,且剪切速率增加。对于分子量为390万的聚苯乙烯,模拟的第一法向应力系数在数量上与实验结果不匹配,部分原因是代表流体力学相互作用所需的微珠N的数量准确地超过了N = 300,这远远超出了我们的承受能力使用,即N =80。我们还预测第二法向应力系数为负值。 (C)2004流变学学会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号