...
首页> 外文期刊>Journal of Sound and Vibration >Time integration of non-linear dynamic equations by means of a direct variational method
【24h】

Time integration of non-linear dynamic equations by means of a direct variational method

机译:非线性动力学方程时间积分的直接变分方法

获取原文
获取原文并翻译 | 示例
           

摘要

Non-linear dynamic problems governed by ordinary (ODE) or partial differential equations (PDE) are herein approached by means of an alternative methodology. A generalized solution named WEM by the authors and previously developed for boundary value problems, is applied to linear and non-linear equations. A simple transformation after selecting an arbitrary interval of interest T allows using WEM in initial conditions problems and others with both initial and boundary conditions. When dealing with the time variable, the methodology may be seen as a time integration scheme. The application of WEM leads to arbitrary precision results. It is shown that it lacks neither numerical damping nor chaos which were found to be present with the application of some of the time integration schemes most commonly used in standard finite element codes (e.g., methods of central difference, Newmark, Wilson-0. and so on). Illustrations include the solution of two non-linear ODEs which govern the dynamics of a single-degree-of-freedom (s.d.o.f.) system of a mass and a spring with two different non-linear laws (cubic and hyperbolic tangent respectively). The third example is the application of WEM to the dynamic problem of a beam with non-linear springs at its ends and subjected to a dynamic load varying both in space and time, even with discontinuities, governed by a PDE, To handle systems of non-linear equations iterative algorithms are employed. The convergence of the iteration is achieved by taking n partitions of T. However, the values of T are, in general, several times larger than the usual Deltat in other time integration techniques. The maximum error (measured as a percentage of the energy) is calculated for the first example and it is shown that WEM yields an acceptable level of errors even when rather large time steps are used. (C) 2002 Elsevier Science Ltd. All rights reserved. [References: 16]
机译:在本文中,通过替代方法论来解决由普通(ODE)或偏微分方程(PDE)控制的非线性动力学问题。作者将先前针对边值问题开发的名为WEM的广义解决方案应用于线性和非线性方程。选择任意感兴趣区间T之后的简单转换允许​​在初始条件问题以及其他同时具有初始条件和边界条件的问题中使用WEM。当处理时间变量时,该方法可以看作是时间积分方案。 WEM的应用导致任意精度的结果。结果表明,它既没有数值阻尼也没有混沌,而在标准有限元代码中最常用的一些时间积分方案的应用(例如,中心差法,Newmark,Wilson-0和。依此类推)。插图包括两个非线性ODE的解决方案,它们控制质量和弹簧的单自由度(s.d.o.f.)系统的动力学,并具有两个不同的非线性定律(分别为三次和双曲正切)。第三个示例是将WEM应用于梁的动态问题,该梁的端部具有非线性弹簧,并且承受时空变化的动态载荷(即使具有不连续性),受PDE的控制。 -线性方程迭代算法被采用。迭代的收敛是通过对T的n个分区实现的。但是,T / n的值通常比其他时间积分技术中的常规Deltat大几倍。对于第一个示例,计算出最大误差(以能量的百分比衡量),结果表明,即使使用相当大的时间步长,WEM也会产生可接受的误差水平。 (C)2002 Elsevier ScienceLtd。保留所有权利。 [参考:16]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号