...
首页> 外文期刊>Journal of Sound and Vibration >Modeling of nonlinear complex stiffness of dual-chamber pneumatic spring for precision vibration isolations
【24h】

Modeling of nonlinear complex stiffness of dual-chamber pneumatic spring for precision vibration isolations

机译:用于精密隔振的双室气动弹簧的非线性复刚度建模

获取原文
获取原文并翻译 | 示例

摘要

Dual-chamber pneumatic springs are widely in the vibration isolation systems for precision instruments such as optical devices or nano-scale equipments owing to their superior stiffness- and damping-characteristics. In order to facilitate their design optimization or active control, a more accurate mathematical model or complex stiffness is needed. So far nonlinearities have not been dealt with. Experimental results we obtained rigorously for a dual-chamber pneumatic spring exhibit significantly amplitude dependent nonlinear behavior, which cannot be described by linear models in earlier researches. In this paper, an improvement for the complex stiffness model is presented by taking two major considerations. One is to consider the amplitude-dependent complex stiffness of diaphragm necessarily employed for prevention of air leakage. The other is to use a dynamic model for oscillating flow in capillary tube connecting the two pneumatic chambers instead of unidirectional flow model. The proposed nonlinear complex stiffness model, which reflects dependency on both frequency and excitation amplitude is shown to be very valid by comparison with the experimental measurements. Such an accurate nonlinear model for the dual-chamber pneumatic springs would contribute to more effective design or control of vibration isolation systems. (c) 2006 Elsevier Ltd. All rights reserved.
机译:由于其优异的刚度和阻尼特性,双室气动弹簧广泛用于诸如光学设备或纳米级设备等精密仪器的隔振系统中。为了促进其设计优化或主动控制,需要更准确的数学模型或复杂的刚度。到目前为止,非线性尚未得到解决。我们严格获得的双腔气动弹簧的实验结果显示出明显的振幅相关非线性行为,这在早期研究中无法用线性模型来描述。在本文中,通过考虑两个主要方面提出了对复杂刚度模型的改进。一种是考虑必须用于防止漏气的隔膜的振幅相关的复刚度。另一种是使用动态模型来振荡连接两个气动腔室的毛细管中的流动,而不是单向流动模型。与实验测量结果相比,所提出的非线性复刚度模型反映了频率和激励幅度的依赖性,是非常有效的。这种用于双室气动弹簧的准确的非线性模型将有助于更有效地设计或控制隔振系统。 (c)2006 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号