首页> 外文期刊>Journal of Radioanalytical and Nuclear Chemistry: An International Journal Dealing with All Aspects and Applications of Nuclear Chemistry >Design and construction of an ultra-low-background 14-crystal germanium array for high efficiency and coincidence measurements
【24h】

Design and construction of an ultra-low-background 14-crystal germanium array for high efficiency and coincidence measurements

机译:超低本底14晶锗阵列的设计和构建,可实现高效率和一致性测量

获取原文
获取原文并翻译 | 示例
           

摘要

Physics experiments, environmental surveillance, and treaty verification techniques continue to require increased sensitivity for detecting and quantifying radionuclides of interest. This can be done by detecting a greater fraction of gamma emissions from a sample (higher detection efficiency) and reducing instrument backgrounds. A current effort for increased sensitivity in high resolution gamma spectroscopy will produce an intrinsic germanium (HPGe) array designed for high detection efficiency, ultra-low-background performance, and useful coincidence efficiencies. The system design is optimized to accommodate filter paper samples, e.g. samples collected by the Radionuclide Aerosol Sampler/Analyzer (RASA). The system will provide high sensitivity for weak collections on atmospheric filter samples, as well as offering the potential to gather additional information from more active filters using gamma cascade coincidence detection. The current effort is constructing an ultra-low-background HPGe crystal array consisting of two vacuum cryostats, each housing a hexagonal array of 7 crystals on the order of 70% relative efficiency per crystal. Traditional methods for constructing ultra-low-background detectors are used, including use of materials known to be low in radioactive contaminants, use of ultra pure reagents, clean room assembly, etc. The cryostat will be constructed mainly from copper electroformed into near-final geometry at PNNL. Details of the detector design, simulation of efficiency and coincidence performance, HPGe crystal testing, and progress on cryostat construction are presented.
机译:物理实验,环境监视和条约验证技术继续要求提高检测和量化目标放射性核素的灵敏度。这可以通过检测样品中更大比例的伽马发射(更高的检测效率)并减少仪器背景来实现。当前为提高高分辨率伽马光谱灵敏度而做出的努力将产生本征锗(HPGe)阵列,该阵列旨在实现高检测效率,超低背景性能和有用的巧合效率。优化系统设计以容纳滤纸样品,例如放射性核素气溶胶采样器/分析仪(RASA)收集的样品。该系统将为大气过滤器样本上的弱收集提供高灵敏度,并提供使用伽马级联重合检测从更活跃的过滤器中收集更多信息的潜力。当前的工作是构建由两个真空低温恒温器组成的超低本底HPGe晶体阵列,每个阵列均容纳7个晶体的六边形阵列,每个晶体的相对效率约为70%。使用构造超低本底探测器的传统方法,包括使用已知的放射性污染物含量低的材料,使用超纯试剂,洁净室组件等。低温恒温器将主要由电铸成接近最终的铜制成PNNL中的几何。介绍了检测器设计,效率和重合性能仿真,HPGe晶体测试以及低温恒温器构建进展的详细信息。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号