...
首页> 外文期刊>Journal of Plasma Physics >Stochastic layer scaling in the two-wire model for divertor tokamaks
【24h】

Stochastic layer scaling in the two-wire model for divertor tokamaks

机译:两线模型中的偏心托卡马克随机层定标

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The question of magnetic hold structure in the vicinity of the separatrix in divertor tokamaks is studied. The authors have investigated this problem earlier in a series of papers, using various mathematical techniques. In the present paper, Me two-wire model (TWM) [Reiman, A. 1996 Phys. Plasmas 3, 906] is considered. It is noted that, in the TMM, it is useful to consider an extra equation expressing magnetic flux conservation. This equation does not add any more information to the TWM, since the equation is derived from the TWM. This equation is useful for controlling We step We in the numerical integration of the TWM equations. The TWM with the extra equation is called the flux-preserving TWM. Nevertheless, the technique is apparently still plagued by numerical inaccuracies when the perturbation level is low, resulting in an incorrect scaling of the stochastic layer width. The stochastic broadening of the separatrix in the flux-preserving TWM is compared with that in the low mn (poloidal mode number m and toroidal mode number n) map (LMN) [Ali, H., Punjabi, A., Boozer, A. and Evans, T. 2004 Phys. Plasmas 11, 1908]. The flux-preserving TWM and LMN both give Boozer-Rechester 0.5 power scaling of the stochastic layer width with the amplitude or magnetic perturbation when the perturbation is sufficiently large [Boozer, A. and Rechester., A. 1978, Phys. Fluids 21, 682]. The flux-preserving TWM gives a larger stochastic layer width when be perturbation is low, while the LMN gives correct scaling in the low perturbation region. Area-preserving maps such as the LMN respect the Hamiltonian structure of held line trajectories, and have the added advantage of computational efficiency. Also, for a 1 1/2 degree of freedom Hamiltonian system such as field lines, maps do not give Arnold diffusion.
机译:研究了偏滤托卡马克分离器附近的磁保持结构问题。作者在较早的系列文章中使用各种数学技术研究了这个问题。在本文中,Me两线模型(TWM)[Reiman,A. 1996 Phys。 Plasmas 3,906]。注意,在TMM中,考虑一个额外的表示磁通守恒的方程是有用的。由于该公式是从TWM派生的,因此该公式不会向TWM添加更多信息。该方程对于控制TWM方程的数值积分中的We step We有用。带有附加方程式的TWM称为保持通量的TWM。然而,当扰动水平低时,该技术显然仍然受到数值不准确的困扰,从而导致随机层宽度的缩放不正确。保留通量的TWM中的分离分布与低mn(极化模式数m和环形模式数n)图(LMN)中的分布相比较[Ali,H.,Punjabi,A.,Boozer,A. and Evans,T. 2004 Phys。等离子11,[1908]。当扰动足够大时,保持通量的TWM和LMN都给Boozer-Rechester随机层宽度的0.5功率缩放,具有振幅或磁扰动[Boozer,A. and Rechester。,A. 1978,Phys。流体21、682]。当扰动较低时,保通量TWM会提供较大的随机层宽度,而LMN则会在低扰动区域中提供正确的缩放比例。诸如LMN之类的区域保留图遵循保持线轨迹的哈密顿结构,并具有计算效率高的优点。同样,对于1 1/2自由度的哈密顿系统(例如场线),地图也不给出Arnold扩散。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号