首页> 外文期刊>Journal of Reinforced Plastics and Composites >A SEM-Fractographic Study of Dynamic Crack Propagation Effects in Particulate Epoxy Systems under Impact Loading Conditions
【24h】

A SEM-Fractographic Study of Dynamic Crack Propagation Effects in Particulate Epoxy Systems under Impact Loading Conditions

机译:冲击载荷条件下颗粒状环氧体系中动态裂纹扩展效应的SEM分形研究

获取原文
获取原文并翻译 | 示例
           

摘要

In this complex study an attempt was made on the one hand to analyze and understand in a systematic way the exact nature of the formation of certain characteristic energy dissipation-induced fractographic features and patterns/markings revealed by scanning electron microscopy (SEM) in particulate epoxy systems under impact (dynamic) loading conditions, and on the other hand to correlate these patterns and features with relevant crack propagation effects. For this scope a combined approach consisting of a qualitative as well as a semiquantitative analysis was employed. In the qualitative analytical approach it was shown that depending on the actual velocity and direction of crack propagation the above observed fractographic entities can be correlated to certain highly localized energy dissipative processes at front-failures as well as to local inertial molecular mass effects. Depending on the changes in the velocity and direction of propagation, the associated effects may be controlled by two basic processes: the single crack front and the multiple crack front splitting. The first process seemed to be governed by a shear toughness-biased system, whereas the second one used a critical strain energy release rate subcracking mechanism. Under certain conditions both processes may be influenced by inertial molecular effects in promoting the formation of relative-smooth fracture surfaces. The increased presence of particles tends to restrict an increase in the surface roughness due to energy dissipation-induced crack retardation effects. The presence of the notch tends to lower the fracture surface roughness compared to notch-free specimens and also to suppress the occurrence of certain elastic as well as viscoelastic-plastic crack delay effects observed in notch-free specimens in function of particle volume fraction.Based on relevant kinematics-aided modeling and impact energy measurements it seems possible to explain, by a gross semi-quantitative approach, the above particles and notch effects. In this context it seems plausible that the existence of a defect-induced fracturing time spectrum of the propagating crack front, in combination with the 'notch-induced shift' behavior of this spectrum, can be valuable for some approximating explanations of the above notch effects and in general the 'kinematics' of the surface roughness formation.
机译:在这项复杂的研究中,一方面试图以系统的方式分析和理解某些特征能量耗散引起的形貌特征和图案/标记的形成的确切性质,这些特征是通过扫描电子显微镜(SEM)在颗粒状环氧树脂中显示的。系统在冲击(动态)载荷条件下,另一方面将这些模式和特征与相关的裂纹扩展效应相关联。对于此范围,采用了由定性和半定量分析组成的组合方法。在定性分析方法中,结果表明,根据实际的裂纹扩展速度和方向,上述观察到的分形图元可以与前破坏点上某些高度局部的能量耗散过程以及局部惯性分子质量效应相关。取决于传播速度和方向的变化,可以通过两个基本过程控制相关的影响:单个裂纹前沿和多个裂纹前沿分裂。第一个过程似乎是由剪切韧性偏向系统控制的,而第二个过程则使用了临界应变能释放速率细分裂纹机制。在某些条件下,这两个过程都可能受到惯性分子效应的影响,从而促进了相对光滑的断裂面的形成。由于能量耗散引起的裂纹延迟效应,增加的颗粒存在趋于限制表面粗糙度的增加。与无缺口试样相比,缺口的存在往往会降低断裂表面的粗糙度,并且还会抑制无缺口试样中观察到的某些弹性以及粘弹塑性裂纹延迟效应的发生与颗粒体积分数的关系。在相关的运动学辅助建模和冲击能量测量中,似乎可以用总的半定量方法来解释上述粒子和缺口效应。在这种情况下,似乎存在缺陷,即裂纹扩展前沿的缺陷诱发的断裂时间谱的存在,结合该谱的“缺口引起的位移”行为,对于上述缺口效应的一些近似解释可能是有价值的。通常是表面粗糙度形成的“运动学”。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号