...
首页> 外文期刊>Journal of Petroleum Geology >VARIATIONS IN COMPOSITION, PETROLEUM POTENTIAL AND KINETICS OF ORDOVICIAN -MIOCENE TYPE I AND TYPE Ml SOURCE ROCKS (OIL SHALES): IMPLICATIONS FOR HYDROCARBON GENERATION CHARACTERISTICS
【24h】

VARIATIONS IN COMPOSITION, PETROLEUM POTENTIAL AND KINETICS OF ORDOVICIAN -MIOCENE TYPE I AND TYPE Ml SOURCE ROCKS (OIL SHALES): IMPLICATIONS FOR HYDROCARBON GENERATION CHARACTERISTICS

机译:I型和Ml型烃源岩(油页岩)的奥陶纪-中新世组成,石油势和动力学的变化:对油气生成特征的影响

获取原文
获取原文并翻译 | 示例

摘要

Lacustrine and marine oil shales with Type I and Type I-II kerogen constitute significant petroleum source rocks around the world. Contrary to common belief, such rocks show considerable compositional variability which influences their hydrocarbon generation characteristics. A global set of 23 Ordovician - Miocene freshwater and brackish water lacustrine and marine oil shales has been studied with regard to their organic composition, petroleum potential and generation kinetics. In addition their petroleum generation characteristics have been modelled.The oil shales can be classified as lacosite, torbanite, tasmanite and kukersite.They are thermally immature. Most of the shales contain >I0 wt% TOC and the highest sulphur contents are recorded in the brackish water and marine oil shales.The kerogen is sapropelic and is principally composed of a complex of algal-derived organic matter in the form of: (i) telalginite (Botryococcus-, Prasinophyte- (Tasmanites?) or Gloeocapsomorpha-type); (ii) lamalginite (laminated, filamentous or network structure derived from Pediastrum- orTetraedron-type algae, from dinoflagellatel acritarch cysts or from thin-walled Prasinophyte-type algae); (iii) fluorescing amorphous organic matter (AOM) and (iv) liptodetrinite. High atomic H/C ratios reflect the hydrogen-rich Type I and Type L-ll kerogen, and Hydrogen Index values generally >300 mg HC/g TOC and reaching nearly 800 mg HCIg TOC emphasise the oil-prone nature of the oil shales. The kerogen type and source rock quality appear not to be related to age, depositional environment or oil shale type.Therefore, a unique, global activation energy (E_a) distribution and frequency factor (A) for these source rocks cannot be expected. The differences in kerogen composition result in considerable variations in E_a-distributions and A-factors. Generation modelling using custom kinetics and the known subsidence history of the Malay-ChoThu Basin (Gulf of Thailand/South China Sea), combined with established and hypothetical temperature histories, show that the oil shales decompose at different rates during maturation. At a maximum temperature of ~120℃ reached during burial, only limited kerogen conversion has taken place. However, oil shales characterised by broader E_a-distributions with low E_a-values (and a single approximated A-factor) show increased decomposition rates.Where more deeply buried (maximum temperature ~150℃), some of the brackish water and marine oil shales have realised the major part of their generation potential, whereas the freshwater oil shales and other brackish water oil shales are only -30-40% converted. At still higher temperatures between ~I65°C and I80°C all oil shales reach 90% conversion. Most hydrocarbons from these source rocks will be generated within narrow oil windows (~20-80% kerogen conversion).Although the brackish water and marine oil shales appear to decompose faster than the freshwater oil shahs, this suggests that with increasing heatflow the influence of kerogen heterogeneity on modelling of hydrocarbon generation declines. It may thus be critical to understand the organic fades of Type I and Type I-II source rocks, particularly in basins with moderate heatflows and restricted burial depths. Measurement of custom kinetics is recommended, if possible, to increase the accuracy of any computed hydrocarbon generation models.
机译:具有I型和I-II型干酪根的Lacustrine和海洋油页岩构成了全球重要的石油烃源岩。与通常的看法相反,这种岩石表现出相当大的组成变化性,这影响了它们的烃生成特性。研究了全球23种奥陶纪-中新世淡水,微咸水湖相和海洋油页岩的有机组成,石油潜力和生成动力学。此外,还对它们的石油生成特征进行了建模,油页岩可分为拉哥石,钙钛矿,塔斯曼石和库克石,它们在热学上还不成熟。大多数页岩的TOC含量> 10 wt%,在咸水和海洋油页岩中硫含量最高。干酪根是腐泥质的,主要由藻类衍生的有机物组成,形式为:(i )telalginite(Botryococcus-,Prasinophyte-(Tasmanites?)或Gloeocapsomorpha型); (ii)硅藻土(层状,丝状或网状结构,来源于Peastastrum或Teededron型藻类,鞭毛鞭毛囊肿或薄壁Prasinophyte型藻类); (iii)发出无定形有机物(AOM)的荧光,以及(iv)脂白铁矿。高的原子H / C比值反映了富氢的I型和L-11型干酪根,氢指数值通常> 300 mg HC / g TOC,达到近800 mg HCl TOC则强调了油页岩的易油性。干酪根类型和烃源岩质量似乎与年龄,沉积环境或油页岩类型无关,因此无法预期这些烃源岩具有独特的全局活化能(E_a)分布和频率因子(A)。干酪根成分的差异会导致E_a分布和A因子发生相当大的变化。使用习惯动力学和马来-秋周盆地(泰国湾/南中国海)的已知沉降历史进行的建模,结合已有的和假设的温度历史,表明油页岩在成熟过程中以不同的速率分解。在埋葬过程中达到的最高温度为〜120℃时,只有有限的干酪根转化发生。但是,以E_a值较低的E_a分布较宽(且具有一个近似的A因子)为特征的油页岩显示出更高的分解速率。在埋藏较深的地方(最高温度约150℃),有些咸水和海洋油页岩已经实现了其发电潜力的主要部分,而淡水油页岩和其他咸淡水油页岩的转化率仅为-30-40%。在约I65°C和I80°C之间的更高温度下,所有油页岩的转化率均达到90%。这些烃源岩中的大多数碳氢化合物都将在狭窄的油窗内产生(约20-80%的干酪根转化率)。尽管咸淡水和海洋油页岩的分解速度似乎比淡水油页岩快,但这表明随着热流的增加,烃生成模型的干酪根异质性下降。因此,了解I型和I-II型烃源岩的有机衰减可能至关重要,尤其是在热流适度且埋藏深度有限的盆地中。如果可能的话,建议测量定制动力学,以提高任何计算出的烃生成模型的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号