首页> 外文期刊>Journal of Process Control >Digital sliding mode controller design for multiple time-delay continuous-time transfer function matrices with a long input-output delay
【24h】

Digital sliding mode controller design for multiple time-delay continuous-time transfer function matrices with a long input-output delay

机译:具有多个输入输出延迟的多个时延连续时间传递函数矩阵的数字滑模控制器设计

获取原文
获取原文并翻译 | 示例
           

摘要

This paper extends the dominant eigenvector-based sliding mode control (SMC) design methodology, which was originally developed for delay-free continuous-time processes with known parameters, to the case of multiple time-delay continuous-time processes with known/unknown parameters. In addition, this paper presents a new prediction-based Chebyshev quadrature digital redesign methodology for indirect design of the digital counterpart of the analog sliding mode controller (ASMC) for multiple time-delay continuous-time transfer function matrices with either a long input delay or a long output delay. An approximated discrete-time model and its corresponding continuous-time model are constructed for multiple time-delay continuous-time stable/unstable dynamical processes with known/unknown parameters, using first the conventional observer/Kalman filter identification (OKID) method. Then, an optimal ASMC is developed using the linear quadratic regulator (LQR) approach, in which the corresponding sliding surface is designed using the user-specified eigenvectors and the scalar sign function. For digital implementation of the proposed non-augmented low-dimensional ASMC, a digital counterpart is designed based on the existing prediction-based digital redesign method and the newly developed prediction-based Chebyshev quadrature digital redesign method. Finally, a non-augmented low dimensional digital observer with a long input or output dead time is constructed for the implementation of the digitally redesigned sliding mode controller, to improve the performances of multiple time-delay dynamical processes. The effectiveness of the proposed method has been verified by means of two illustrative examples. (C) 2014 Elsevier Ltd. All rights reserved.
机译:本文将最初基于具有特征参数的无延迟连续时间过程开发的基于特征向量的滑模控制(SMC)主导设计方法扩展到具有已知参数/未知参数的多个时延连续时间过程的情况。此外,本文还提出了一种新的基于预测的Chebyshev正交数字重新设计方法,用于间接设计模拟滑模控制器(ASMC)的数字对等物,以用于具有长输入延迟或时延的多个时延连续时间传递函数矩阵。输出延迟长。首先使用常规的观察者/卡尔曼滤波器识别(OKID)方法,为具有已知/未知参数的多个时延连续时间稳定/不稳定动力学过程构建近似离散时间模型及其相应的连续时间模型。然后,使用线性二次调节器(LQR)方法开发最佳ASMC,其中使用用户指定的特征向量和标量符号函数设计相应的滑动表面。对于所提出的非增强型低维ASMC的数字实现,基于现有的基于预测的数字重新设计方法和新开发的基于预测的Chebyshev正交数字重新设计方法来设计数字副本。最后,构造了具有长输入或输出停滞时间的非增强型低维数字观察器,以实现数字化重新设计的滑模控制器,以改善多个时滞动态过程的性能。借助于两个示例性实例验证了所提出方法的有效性。 (C)2014 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号