首页> 外文期刊>Journal of Plant Physiology >Photosynthetic acclimation, vernalization, crop productivity and 'the grand design of photosynthesis'
【24h】

Photosynthetic acclimation, vernalization, crop productivity and 'the grand design of photosynthesis'

机译:光合适应性,春化作用,农作物生产力和“光合作用的宏伟设计”

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Daniel Arnon first proposed the notion of a 'grand design of photosynthesis' in 1982 to illustrate the central role of photosynthesis as the primary energy transformer for all life on Earth. However, we suggest that this concept can be extended to the broad impact of photosynthesis not only in global energy transformation but also in the regulation of plant growth, development, survival and crop productivity through chloroplast redox signalling. We compare and contrast the role of chloroplast redox imbalance, measured as excitation pressure, in governing acclimation to abiotic stress and phenotypic plasticity. Although all photoautrophs sense excessive excitation energy through changes in excitation pressure, the response to this chloroplast redox signal is species dependent. Due to a limited capacity to adjust metabolic sinks, cyanobacteria and green algae induce photoprotective mechanisms which dissipate excess excitation energy at a cost of decreased photosynthetic performance. In contrast, terrestrial, cold tolerant plants such as wheat enhance metabolic sink capacity which leads to enhanced photosynthetic performance and biomass accumulation with minimal dependence on photoprotection. We suggest that the family of nuclear C-repeat binding transcription factors (CBFs) associated with the frost resistance locus, FR2, contiguous with the vernalization locus, VRN1, and mapped to chromosome 5A of wheat, may be critical components that link leaf chloroplast redox regulation to enhanced photosynthetic performance, the accumulation of growth-active gibberellins and the dwarf phenotype during cold acclimation prior to the vegetative to reproductive transition controlled by vernalization in winter cereals. Further genetic, molecular and biochemical research to confirm these links and to elucidate the molecular mechanism by which chloroplast redox modulation of CBF expression leads to enhanced photosynthetic performance is required. Because of the superior abiotic stress tolerance of cold tolerant winter wheat and seed yields that historically exceed those of spring wheat by 30-40%, we discuss the potential to exploit winter cereals for the maintenance or perhaps even the enhancement of cereal productivity under future climate change scenarios that will be required to feed a growing human population. (C) 2016 Elsevier GmbH. All rights reserved.
机译:丹尼尔·阿农(Daniel Arnon)于1982年首次提出了“光合作用的宏伟设计”的概念,以说明光合作用作为地球上所有生命的主要能源转换器的核心作用。但是,我们建议将这一概念扩展到光合作用的广泛影响中,不仅在全球能源转化中,而且在通过叶绿体氧化还原信号传导调节植物生长,发育,存活和作物生产力方面。我们比较和对比了叶绿体氧化还原失衡的作用,以激发压力来衡量,它控制着适应非生物胁迫和表型可塑性。尽管所有光合生物通过激发压力的变化感知到过多的激发能量,但是对这种叶绿体氧化还原信号的响应却取决于物种。由于调节代谢库的能力有限,蓝细菌和绿藻诱导了光保护机制,该机制以降低光合作用的性能为代价来消散多余的激发能。相反,诸如小麦之类的陆地耐寒植物增强了代谢库能力,从而提高了光合性能和生物量积累,而对光保护的依赖性却最小。我们建议与抗霜基因座FR2,春化基因座VRN1相邻并定位于小麦5A染色体的核C重复结合转录因子(CBF)家族可能是连接叶绿体氧化还原的关键成分调节,以增强春季谷物控制的无性繁殖到生殖过渡之前的冷适应过程中增强的光合作用性能,生长活性赤霉素的积累和矮表型。需要进一步的遗传,分子和生化研究来证实这些联系并阐明叶绿体氧化还原调节CBF表达导致增强的光合性能的分子机制。由于耐寒冬小麦具有优异的非生物胁迫耐受性,并且种子产量历来比春季小麦高30-40%,因此我们讨论了在未来气候下利用冬季谷物维持或什至提高谷物生产力的潜力改变养活不断增长的人口所需的方案。 (C)2016 Elsevier GmbH。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号