首页> 外文期刊>Journal of Physical Organic Chemistry >DFT study on addition reaction mechanism of guanine-cytosine base pair with OH radical
【24h】

DFT study on addition reaction mechanism of guanine-cytosine base pair with OH radical

机译:DFT研究鸟嘌呤-胞嘧啶碱基对与OH自由基的加成反应机理

获取原文
获取原文并翻译 | 示例
       

摘要

The addition reaction mechanism of OH radical with guanine-cytosine (G(.)C) base pair has been explored at the B3LYP/DZP++ level of density functional theory (DFT). Structures perturbations along the hydroxylation of G(.)C base pair cause strain in the pairing and double-strand breaks in DNA. Seven possible hydroxylation reactions are exothermic, and the reaction energy decreases in the order of G(.)C(C4)>G(C5.)C>G(C2.)C>G(C4.)C>G(.)C(C5)>G(.)C(C6)>G(C8.)C. The hydroxylation reactions at G(.)C(C5) and G(C8.)C sites appear to be barrierless, and the sequence of the barrier energy is G(.)C(C4)>G(C4.)C>G(C2.)C>G(C5.)C>G(.)C(C6)>G(.)C(C5)similar to G(C8.)C. The results indicate that hydroxylation at G(C8.)C, G(.)C(C5) and G(.)C(C6) are more thermodynamically and kinetically favorable than other sites in G(.)C base pair. Considering the solvent effects by using the polarizable continuum model, the stabilities of all the compounds are increased significantly. Little change is taken place on the data of the reaction energies and barrier energies. Their sequences and the stability order follow the same trends like them in gas phase. The fluctuation of natural bond orbital charge further confirms that the hydroxylation reactions are exothermic. And transient spectra computed with the time-dependent density functional theory (TD-DFT) match well with the previous experimental and theoretical reports. Our deduced mechanism is in good agreement with the experimentally observed hydroxylated adducts. Copyright (c) 2015 John Wiley & Sons, Ltd.
机译:在密度泛函理论(DFT)的B3LYP / DZP ++水平上,探索了OH自由基与鸟嘌呤-胞嘧啶(G(。)C)碱基对的加成反应机理。沿G(。)C碱基对的羟基化作用的结构扰动在配对中引起应变,并在DNA中产生双链断裂。七个可能的羟基化反应是放热的,反应能量按G(。)C(C4)> G(C5。)C> G(C2。)C> G(C4。)C> G(。)的顺序降低。 C(C5)> G(。)C(C6)> G(C8。)C。 G(。)C(C5)和G(C8。)C位置的羟基化反应似乎是无障碍的,并且障碍能的顺序为G(。)C(C4)> G(C4。)C> G (C2。)C> G(C5。)C> G(。)C(C6)> G(。)C(C5)与G(C8。)C类似。结果表明,G(C8.C),G(C)C(C5)和G(C)C(C6)的羟基化反应比G(C)C碱基对中的其他位点在热力学和动力学上更有利。考虑到使用可极化连续体模型的溶剂效应,所有化合物的稳定性均得到显着提高。反应能和势垒能的数据变化很小。它们的顺序和稳定性顺序遵循与气相相同的趋势。天然键轨道电荷的波动进一步证实了羟基化反应是放热的。用时变密度泛函理论(TD-DFT)计算的瞬态光谱与先前的实验和理论报告非常吻合。我们推导的机理与实验观察到的羟基化加合物高度吻合。版权所有(c)2015 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号