...
首页> 外文期刊>Journal of Physics. Condensed Matter >Theory of nonlinear charge transport, wave propagation, and self-oscillations in semiconductor superlattices [Review]
【24h】

Theory of nonlinear charge transport, wave propagation, and self-oscillations in semiconductor superlattices [Review]

机译:半导体超晶格中的非线性电荷传输,波传播和自激振荡理论[综述]

获取原文
获取原文并翻译 | 示例
           

摘要

Nonlinear charge transport in semiconductor superlattices under strong electric fields parallel to the growth direction results in rich dynamical behaviour including the formation of electric field domains, pinning or propagation of domain walls, self-sustained oscillations of the current and chaos. Theories of these effects use reduced descriptions of transport in terms of average charge densities, electric fields, etc. This is simpler when the main transport mechanism is resonant tunnel ling of electrons between adjacent wells followed by fast scattering between subbands. In this case, we will derive microscopically appropriate discrete models and boundary conditions. Their analyses reveal differences between low-field behaviour where domain walls may move oppositely or parallel to electrons, and high-field behaviour where they can only follow the electron flow. The dynamics is controlled by the amount of charge available in the superlattice and doping at the injecting contact. When the charge inside the wells becomes large, boundaries between electric field domains are pinned resulting in multistable stationary solutions. Lower charge inside the wells results in self-sustained oscillations of the current due to recycling and motion of domain walls, which are formed by charge monopoles (high contact doping) or dipoles (low contact doping). Besides explaining wave motion and subsequent current oscillations, we will show how the latter depend on such controlling parameters as voltage, doping, temperature, and photoexcitation. [References: 88]
机译:在平行于生长方向的强电场下,半导体超晶格中的非线性电荷传输会产生丰富的动力学行为,其中包括电场畴的形成,畴壁的钉扎或传播,电流的自持振荡和混沌。这些效应的理论在平均电荷密度,电场等方面减少了对传输的描述。当主要传输机制是相邻阱之间电子的共振隧道传输,然后是子带之间的快速散射时,这更简单。在这种情况下,我们将得出微观上合适的离散模型和边界条件。他们的分析揭示了畴壁可能与电子相反或平行移动的低场行为与只能跟随电子流的高场行为之间的差异。动力学由超晶格中的可用电荷量和注入触点处的掺杂量控制。当阱中的电荷变大时,电场域之间的边界将被固定,从而导致多稳态平稳解。由于畴壁的循环和运动,阱内部较低的电荷会导致电流的自持振荡,这是由电荷单极(高接触掺杂)或偶极(低接触掺杂)形成的。除了说明波动和随后的电流振荡之外,我们还将展示后者如何取决于电压,掺杂,温度和光激发等控制参数。 [参考:88]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号