首页> 外文期刊>Journal of Physics, D. Applied Physics: A Europhysics Journal >Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti-6Al-4V, 304L stainless steel and vanadium
【24h】

Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti-6Al-4V, 304L stainless steel and vanadium

机译:钽,Ti-6Al-4V,304L不锈钢和钒的小孔模式激光焊接过程中的热传递和流体流动

获取原文
获取原文并翻译 | 示例
           

摘要

Because of the complexity of several simultaneous physical processes, most heat transfer models of keyhole mode laser welding require some simplifications to make the calculations tractable. The simplifications often limit the applicability of each model to the specific materials systems for which the model is developed. In this work, a rigorous, yet computationally efficient, keyhole model is developed and tested on tantalum, Ti-6Al-4V,304L stainless steel and vanadium. Unlike previous models, this one combines an existing model to calculate keyhole shape and size with numerical fluid flow and heat transfer calculations in the weld pool. The calculations of the keyhole profile involved a point-by-point heat balance at the keyhole walls considering multiple reflections of the laser beam in the vapour cavity. The equations of conservation of mass, momentum and energy are then solved in three dimensions assuming that the temperatures at the keyhole wall reach the boiling point of the different metals or alloys. A turbulence model based on Prandtl's mixing length hypothesis was used to estimate the effective viscosity and thermal conductivity in the liquid region. The calculated weld cross-sections agreed well with the experimental results for each metal and alloy system examined here. In each case, the weld pool geometry was affected by the thermal diffusivity, absorption coefficient, and the melting and boiling points, among the various physical properties of the alloy. The model was also used to better understand solidification phenomena and calculate the solidification parameters at the trailing edge of the weld pool. These calculations indicate that the solidification structure became less dendritic and coarser with decreasing weld velocities over the range of speeds investigated in this study. Overall, the keyhole weld model provides satisfactory simulations of the weld geometries and solidification sub-structures for diverse engineering metals and alloys.
机译:由于几个同时进行的物理过程的复杂性,大多数锁孔模式激光焊接的传热模型都需要进行一些简化,以使计算变得容易。简化常常将每个模型的适用性限制在为其开发模型的特定材料系统上。在这项工作中,开发了一种严格但计算效率高的钥匙孔模型,并在钽,Ti-6Al-4V,304L不锈钢和钒上进行了测试。与以前的模型不同,此模型结合了现有模型以通过焊接池中的流体流动和传热数值计算来计算锁孔的形状和大小。考虑到激光束在蒸气腔中的多次反射,锁孔轮廓的计算涉及锁孔壁上逐点的热平衡。假设钥匙孔壁上的温度达到不同金属或合金的沸点,则可以在三个维度上求解质量,动量和能量守恒方程。使用基于Prandtl混合长度假设的湍流模型估算液体区域的有效粘度和导热系数。对于这里检查的每种金属和合金系统,计算得出的焊缝横截面与实验结果非常吻合。在每种情况下,在合金的各种物理特性中,熔池的几何形状都会受到热扩散率,吸收系数以及熔点和沸点的影响。该模型还用于更好地了解凝固现象并计算焊缝后缘的凝固参数。这些计算表明,在本研究中研究的速度范围内,随着焊接速度的降低,凝固组织变得更少树枝状和更粗糙。总体而言,锁孔焊缝模型可以为各种工程金属和合金提供令人满意的焊缝几何形状和凝固子结构的模拟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号