首页> 外文学位 >Heat transfer, fluid flow and mass transfer in laser welding of stainless steel with small length scale.
【24h】

Heat transfer, fluid flow and mass transfer in laser welding of stainless steel with small length scale.

机译:小尺寸不锈钢的激光焊接中的热传递,流体流动和质量传递。

获取原文
获取原文并翻译 | 示例

摘要

Nd: YAG Laser welding with hundreds of micrometers in laser beam diameter is widely used for assembly and closure of high reliability electrical and electronic packages for the telecommunications, aerospace and medical industries. However, certain concerns have to be addressed to obtain defect-free and structurally sound welds. During laser welding, Because of the high power density used, the pressures at the weld pool surface can be greater than the ambient pressure. This excess pressure provides a driving force for the vaporization to take place. As a result of vaporization for different elements, the composition in the weld pool may differ from that of base metal, which can result in changes in the microstructure and degradation of mechanical properties of weldments. When the weld pool temperatures are very high, the escaping vapor exerts a large recoil force on the weld pool surface, and as a consequence, tiny liquid metal particles may be expelled from the weld pool. Vaporization of alloying elements and liquid metal expulsion are the two main mechanisms of material loss. Besides, for laser welds with small length scale, heat transfer and fluid flow are different from those for arc welds with much larger length scale. Because of small weld pool size, rapid changes of temperature and very short duration of the laser welding process, physical measurements of important parameters such as temperature and velocity fields, weld thermal cycles, solidification and cooling rates are very difficult. The objective of the research is to quantitatively understand the influences of various factors on the heat transfer, fluid flow, vaporization of alloying elements and liquid metal expulsion in Nd:YAG laser welding with small length scale of 304 stainless steel.; In this study, a comprehensive three dimensional heat transfer and fluid flow model based on the mass, momentum and energy conservation equations is relied upon to calculate temperature and velocity fields in the weld pool, weld thermal cycle, weld pool geometry and solidification parameters. Surface tension and buoyancy forces were considered for the calculation of transient weld pool convection. Very fine grids and small time steps were used to achieve accuracy in the calculations. The calculated weld pool dimensions were compared with the corresponding measured values to validate the model. (Abstract shortened by UMI.)
机译:Nd:YAG激光束直径为数百微米的激光焊接被广泛用于电信,航空航天和医疗行业的高可靠性电气和电子封装的组装和封闭。但是,必须解决某些问题才能获得无缺陷且结构合理的焊缝。在激光焊接过程中,由于使用了高功率密度,焊池表面的压力可能大于环境压力。该过大压力提供了发生汽化的驱动力。由于不同元素的汽化,焊池中的成分可能与母材的成分不同,这可能导致显微组织发生变化并导致焊件的机械性能下降。当焊池温度很高时,逸出的蒸气会在焊池表面上施加很大的反冲力,结果,微小的液态金属颗粒可能会从焊池中排出。合金元素的汽化和液态金属的排出是材料损失的两个主要机理。此外,对于小规模的激光焊,传热和流体流动与大得多的电弧焊不同。由于焊池尺寸小,温度变化快且激光焊接过程持续时间短,因此重要参数的物理测量非常困难,例如温度和速度场,焊接热循环,凝固和冷却速率。该研究的目的是定量地了解各种因素对304不锈钢小尺寸Nd:YAG激光焊接中的传热,流体流动,合金元素的汽化和液态金属排出的影响。在这项研究中,基于质量,动量和能量守恒方程的综合三维传热和流体流动模型可用于计算焊池中的温度和速度场,焊缝热循环,焊池几何形状和凝固参数。考虑表面张力和浮力来计算瞬态焊缝对流。使用非常精细的网格和较小的时间步长来实现计算的准确性。将计算出的焊池尺寸与相应的测量值进行比较,以验证模型。 (摘要由UMI缩短。)

著录项

  • 作者

    He, Xiuli.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 186 p.
  • 总页数 186
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号