...
首页> 外文期刊>Journal of Nuclear Materials: Materials Aspects of Fission and Fusion >Determination of fracture strength of δ-zirconium hydrides embedded in zirconium matrix at high temperatures
【24h】

Determination of fracture strength of δ-zirconium hydrides embedded in zirconium matrix at high temperatures

机译:高温下嵌入锆基中的δ-氢化锆断裂强度的测定

获取原文
获取原文并翻译 | 示例

摘要

The fracture strength of δ-zirconium hydrides embedded in a zirconium matrix was determined at temperatures between 25 °C and 250 °C by ring tensile tests using Zircaloy-2 tubes. Essentially all of the present hydrides in the tubes were re-oriented in the radial direction by a temperature cycling treatment and then tensile stress was applied perpendicular to the hydrides to ensure that brittle fracture would occur at the hydrides. The hydrides failed in a brittle manner below 100 °C where-as the zirconium matrix itself underwent ductile fracture without hydride cracking at temperatures above 200 °C under plane stress condition. Brittle fracture of the hydrides continued to occur at temperatures up to 250 °C under plane strain condition, suggesting that the upper limit temperature for hydride fracture, T _(upper), was raised by the triaxial stress state under the plane strain condition. The apparent fracture strength of the hydrides, σhydridef, was determined at temperatures below T_(upper) from the measured fracture strength of the tubes, making a correction for the compressive transformation stress in the hydrides. σhydridef was about 710 MPa at temperatures between 25 °C and 250 °C at both plane stress and plane strain conditions. The temperature dependency was very small in this temperature range. T_(upper) was almost equivalent to the cross-over temperature between σhydridef and the ultimate tensile strength (UTS), which suggests that, at temperatures above T_(upper), the zirconium matrix would undergo ductile fracture before the stress in the hydride is raised above σhydridef, since UTS is smaller than σhydridef.
机译:使用Zircaloy-2管通过环拉伸试验在25°C和250°C之间的温度下确定了嵌入锆基中的δ-锆氢化物的断裂强度。基本上,通过温度循环处理将管中存在的所有氢化物在径向上重新定向,然后垂直于氢化物施加拉伸应力,以确保在氢化物处发生脆性断裂。氢化物在低于100°C时会以脆性方式失效,因为在平面应力条件下,锆基体本身在200°C以上的温度下会发生韧性断裂,而氢化物不会破裂。在平面应变条件下,氢化物在高达250°C的温度下继续发生脆性断裂,这表明在平面应变条件下,三轴应力状态使氢化物断裂的上限温度T _(upper)升高。根据所测得的管子的断裂强度,在低于T_(上部)的温度下确定氢化物的表观断裂强度σhydridef,从而校正了氢化物中的压缩转变应力。在平面应力和平面应变条件下,在25°C至250°C之间的温度下,σ氢化物约为710 MPa。在此温度范围内,温度依赖性非常小。 T_(上)几乎等于σ氢化物和极限抗拉强度(UTS)之间的交叉温度,这表明,在T_(上)以上的温度下,锆基在发生氢化物应力之前会发生延性断裂。因为UTS小于σhydridef,所以它高于σhydridef。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号