...
首页> 外文期刊>Journal of orthopaedic research >Relative roles of microdamage and microfracture in the mechanical behavior of trabecular bone.
【24h】

Relative roles of microdamage and microfracture in the mechanical behavior of trabecular bone.

机译:微损伤和微骨折在小梁骨力学行为中的相对作用。

获取原文
获取原文并翻译 | 示例

摘要

Compared to trabecular microfracture, the biomechanical consequences of the morphologically more subtle trabecular microdamage are unclear but potentially important because of its higher incidence. A generic three-dimensional finite element model of the trabecular bone microstructure was used to investigate the relative biomechanical roles of these damage categories on reloading elastic modulus after simulated overloads to various strain levels. Microfractures of individual trabeculae were modeled using a maximum fracture strain criterion, for three values of fracture strain (2%, 8%, and 35%). Microdamage within the trabeculae was modeled using a strain-based modulus reduction rule based on cortical bone behavior. When combining the effects of both microdamage and microfracture, the model predicted reductions in apparent modulus upon reloading of over 60% at an applied apparent strain of 2%, in excellent agreement with previously reported experimental data. According to the model, up to 80% of the trabeculae developed microdamage at 2% apparent strain, and between 2% and 10% of the trabeculae were fractured, depending on which fracture strain was assumed. If microdamage could not occur but microfracture could, good agreement with the experimental data only resulted if the trabecular hard tissue had a fracture strain of 2%. However, a high number of fractures (10% of the trabeculae) would need to occur for this case, and this has not been observed in published damage morphology studies. We conclude therefore that if the damage behavior of trabecular hard tissue is similar to that of cortical bone, then extensive microdamage is primarily responsible for the large loss in apparent mechanical properties that can occur with overloading of trabecular bone.
机译:与小梁微骨折相比,形态更细微的小梁微损伤的生物力学后果尚不清楚,但由于其较高的发生率而具有潜在的重要性。用小梁骨微观结构的通用三维有限元模型研究了这些损伤类别在模拟过载至各种应变水平后对再加载弹性模量的相对生物力学作用。使用最大骨折应变标准对单个小梁的微骨折建模,以三个骨折应变值(2%,8%和35%)进行建模。使用基于皮质骨行为的基于应变的模量减少规则对小梁内的微损伤进行建模。当结合微损伤和微断裂的影响时,该模型预测在施加2%的表观应变时重载时表观模量减少60%以上,与先前报道的实验数据非常吻合。根据该模型,取决于假定的断裂应变,高达80%的小梁会在2%的表观应变下产生微损伤,并且2%到10%的小梁会断裂。如果不能发生微损伤但可以发生微骨折,则仅在小梁硬组织的骨折应变为2%的情况下才能与实验数据保持良好的一致性。但是,在这种情况下,将需要发生大量的骨折(小梁的10%),而且尚未在已发表的损伤形态学研究中观察到这一点。因此,我们得出的结论是,如果小梁硬组织的损伤行为与皮质骨相似,则广泛的微损伤是造成小梁骨超载可能导致的明显机械性能损失的主要原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号