首页> 外文会议>SPIE Conference on Medical Imaging >Role of trabecular microfractures in failure of human vertebrae estimated by the finite element method
【24h】

Role of trabecular microfractures in failure of human vertebrae estimated by the finite element method

机译:小梁微裂缝在有限元法估算人椎骨衰竭中的作用

获取原文
获取外文期刊封面目录资料

摘要

Spine fractures are the most frequent complication of osteoporosis, a disease characterized by low bone mass and structural deterioration of bone tissue. In case of the spine, the trabecular network plays the main role in load carrying and distribution. A correct description of mechanical properties of this bone structure helps to differentiate between strong and weak bones and can be useful for fracture prediction and treatment monitoring. By means of the finite element method (FEM), applied to μCT images, we modelled biomechanical processes in probes during loading and correlated the estimated failure load with the maximum compressive strength (MCS), obtained in real biomechanical tests. We studied a sample of 151 specimens taken from the trabecular part of human vertebrae in vitro, visualised using μ CT imaging at an isotropic resolution of 26μm and tested by uniaxial compression. Besides the standard way of estimating failure load, which takes into account only strong micro-fractures, we also included small micro-fractures, what improved the correlation with MCS (Pearson's correlation coefficient r=0.78 vs. r=0.58). This correlation coefficient was larger than that for both the standard morphometric parameters (r=0.73 for bone volume fraction) and for texture measures defined by the local (an-) isotropic scaling indices method (r=0.55) and Minkowski Functionals (r=0.61). However, the performance of the FEM was different for subsamples selected according to the MCS value. The correlation increased for strong specimens (r=0.88), slightly decreased for weak specimens (r=0.68) and markedly dropped for specimens with medium MCS, e.g. between 60< MCS< 120, r=0.26.
机译:脊柱骨折是骨质疏松症最常见的复杂性,一种疾病,其特征在于骨组织的低骨质量和结构劣化。在脊柱的情况下,小梁网络在负载携带和分布中起主要作用。这种骨骼结构的机械性能的正确描述有助于区分强骨骼和弱骨骼,并且可用于裂缝预测和治疗监测。借助于施加到μCT图像的有限元方法(FEM),我们在装载过程中建模的探针中的生物力学过程,并将估计的故障负载与真实的生物力学测试中获得的最大压缩强度(MCS)相关联。我们研究了从体外从人椎体的小梁部分取出的151种样品的样品,在各向同性分辨率为26μm的各向同性分辨率下使用μCT成像进行可视化,并通过单轴压缩进行测试。除了估计失效负荷的标准方式外,还考虑了强大的微骨折,我们还包括小的微骨折,改善与MCS相关性的相关性(Pearson的相关系数R = 0.78 Vs.R = 0.58)。这种相关系数大于标准形态学参数(骨骼体积分数的R = 0.73)和由局部(AN-)各向同性缩放指标方法(R = 0.55)和Minkowski功能定义的纹理测量(R = 0.61 )。然而,对于根据MCS值选择的子样本的FEM的性能是不同的。对于强试样(R = 0.88)的相关性增加,弱试样略微降低(r = 0.68),并且对于具有介质MCS的标本,显着掉落。在60

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号