首页> 外文期刊>Journal of Molecular Structure >Using artificial neural networks to develop molecular mechanics parameters for the modelling of metalloporphyrins. III. Five coordinate Zn(II) porphyrins and the metalloprophyrins of the early 3d metals
【24h】

Using artificial neural networks to develop molecular mechanics parameters for the modelling of metalloporphyrins. III. Five coordinate Zn(II) porphyrins and the metalloprophyrins of the early 3d metals

机译:使用人工神经网络开发用于建模金属卟啉的分子力学参数。三,早期3d金属的五配位Zn(II)卟啉和金属卟啉

获取原文
获取原文并翻译 | 示例
           

摘要

Artificial neural networks (ANNs) are used as an aid in developing force field parameters for modelling, using molecular mechanics methods and the MM2 force field, the porphyrins of the early transition metals, Sc(III), Ti(II), Ti(III), Ti(IV), V(II), V(III), V(IV), Cr(III), Cr(IV) and Cr(V), in which the metal is either five- or six-coordinate. The porphyrin ring itself was modelled with previously derived parameters and attention was focussed on deriving parameters to model the coordination sphere of the metal. By modelling five-coordinate Zn(II) porphyrins with an axial pyridine ligand, for which there are many structures, we demonstrate that the length of the metal-N-porph bond is relatively insensitive to the length of the metal-N-axial bond, and vice versa. There are relatively few crystal structures of the early 3d metalloporphyrins available and very few which contain the same axial ligand. Hence, preliminary parameters for modelling a wide variety of axial ligands are reported; these were typically derived by initially setting the strain free bond length and bond angles involving the metal and the axial donor atom to the crystallographically observed value, and varying the bond stretching and angle bending parameter, or the strain free bond length and bond angles iteratively, until the bond length and angles were reproduced to within 0.01 angstrom and 2.5 degrees, respectively. Since the modelling of the [Zn(porphyrin)(pyridine)] complexes demonstrated the relative insensitivity of the equatorial metal-ligand parameters to the axial metal-ligand parameters and vice-versa, the paucity of structures and hence the necessarily preliminary values of the parameters for the modelling of the axial ligands did not preclude the development of parameters for the equatorial ligands. The strain free bond length l(0), and the stretching force constant k(s) for the metal-N-porph bond length was varied in a grid-like pattern. The mean difference between the metal-N-porph bond length observed experimentally and determined by MM was defined as the error function. The minimum value of the error function was found using ANNs. Modelling the structures with the values of k(s) and l(0) that correspond to the minimum of the error function gave mean metal-N-porph bonds that differed from crystallographically observed values by at most 0.008 angstrom, within the experimental standard deviation of this parameter. The deviations from planarity found in many of the modelled structures were usually well reproduced in the modelling. Where significant differences were noted, these could sometimes (but not always) be shown to be due to packing forces in the crystal lattice. As expected, the orientation of axial ligands and substituents on the periphery of the porphyrin ring was often significantly different in the modelled and the solid-state structure because of the conformational freedom of these groups. (c) 2004 Elsevier B.V. All rights reserved.
机译:人工神经网络(ANN)借助分子力学方法和MM2力场,早期过渡金属的卟啉,Sc(III),Ti(II),Ti(III)来帮助开发用于建模的力场参数),Ti(IV),V(II),V(III),V(IV),Cr(III),Cr(IV)和Cr(V),其中金属为五坐标或六坐标。卟啉环本身是用先前推导的参数建模的,并且注意力集中在推导参数上以建模金属的配位球。通过建模具有许多结构的轴向吡啶配体的五坐标Zn(II)卟啉,我们证明了金属-N-卟啉键的长度相对于金属-N-轴向键的长度相对不敏感,反之亦然。可用的早期3d金属卟啉晶体结构相对较少,并且包含相同轴向配体的晶体结构也很少。因此,报道了用于建模多种轴向配体的初步参数。这些通常是通过首先将涉及金属和轴向供体原子的无应变键长和键角设置为晶体学观察值,然后改变键拉伸和角弯曲参数,或者反复地改变无应变键长和键角来得出的,直到键的长度和角度分别复制到0.01埃和2.5度以内。由于[Zn(卟啉)(吡啶)]配合物的建模证明了赤道金属配体参数对轴向金属配体参数的相对不敏感性,反之亦然,因此结构的稀缺性以及因此必需的初步值用于轴向配体建模的参数并不排除开发赤道配体参数的可能性。自由应变的键长l(0)和金属-N-卟啉键长的拉伸力常数k(s)呈网格状变化。通过实验观察并通过MM确定的金属-N-卟啉键长之间的平均差被定义为误差函数。使用人工神经网络找到了误差函数的最小值。用与误差函数最小值相对应的k(s)和l(0)值对结构进行建模,得出平均金属-N-卟啉键与晶体学观察值的差异最大为0.008埃,在实验标准偏差内此参数。在许多建模结构中发现的与平面度的偏差通常可以在建模中很好地再现。在发现明显差异的地方,有时(但并非总是)表明这些差异是由于晶格中的堆积力引起的。如所期望的,由于这些基团的构象自由性,卟啉环的外围上的轴向配体和取代基的取向在建模和固态结构中通常显着不同。 (c)2004 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号