...
首页> 外文期刊>Journal of Molecular Structure. Theochem: Applications of Theoretical Chemistry to Organic, Inorganic and Biological Problems >Pyrolysis mechanism of carbon matrix precursor cyclohexane(III) - pyrolysis process of intermediate 1-hexene
【24h】

Pyrolysis mechanism of carbon matrix precursor cyclohexane(III) - pyrolysis process of intermediate 1-hexene

机译:碳基质前体环己烷(III)的热解机理-中间体1-己烯的热解过程

获取原文
获取原文并翻译 | 示例

摘要

The pyrolysis mechanism of important intermediate 1-hexene of carbon matrix precursor cyclohexane was studied theoretically. Possible reaction paths were designed based on the potential surface scan and electron structure of the initial C-C bond breaking reactions. Thermodynamic and kinetic parameters of the possible reaction paths were computed by UB3LYP/6-31+G* at different temperature ranges. The results show that 1-hexene pyrolyzes at 873 K. When below 1273 K, the major reaction paths are those that produce C3H4, and above 1273 K, the major reaction paths are those that produce .C3H3 from the viewpoint of thermodynamics. From the viewpoint of kinetics, the major product is .C3H3, it results from the pyrolysis reaction of I-hexene cracking bond C-3-C-4 and generating .C3H5 and .C3H7 with the activation energy DeltaE(0)(not equaltheta)=296.32 kJ/mol. Kinetic results also show that product C3H4 accompany simultaneously, which is the side reaction starting from the pyrolysis of I-hexene forming .C4H7 and .C2H5 with the activation energy of 356.73 kJ/mol. When reaching 1473 K, the rate constant of the rate-determining steps of these two reaction paths do not show much difference, which means both the reaction paths exist in the pyrolysis process at the high temperature. The above results are basically in accordance with mass spectrum analysis and far more specific. (C) 2004 Elsevier B.V. All rights reserved.
机译:从理论上研究了碳基质前体环己烷的重要中间体1-己烯的热解机理。根据潜在的C-C键断裂反应的表面扫描和电子结构设计了可能的反应路径。通过UB3LYP / 6-31 + G *在不同温度范围内计算可能的反应路径的热力学和动力学参数。结果表明,1-己烯在873 K时发生热解。当低于1273 K时,主要反应路径是产生C3H4的反应路径,而在1273 K之上,从热力学角度来看,主要反应路径是产生C3H3的反应路径。从动力学的角度来看,主要产物是.C3H3,它是由I-己烯裂解键C-3-C-4的热解反应生成的,其活化能为DeltaE(0)(不等于thetata)而生成.C3H5和.C3H7 )= 296.32 kJ / mol。动力学结果还显示产物C3H4同时伴随,这是从异己烯热解形成.C4H7和.C2H5开始的副反应,其活化能为356.73 kJ / mol。当达到1473K时,这两个反应路径的速率确定步骤的速率常数没有显示出太大的差异,这意味着两个反应路径都在高温下的热解过程中存在。以上结果基本上是根据质谱分析得出的,而且更为具体。 (C)2004 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号