...
首页> 外文期刊>Journal of Neuroscience Methods >The impact of synaptic conductance on action potential waveform: evoking realistic action potentials with a simulated synaptic conductance.
【24h】

The impact of synaptic conductance on action potential waveform: evoking realistic action potentials with a simulated synaptic conductance.

机译:突触电导对动作电位波形的影响:用模拟的突触电导唤起现实的动作电位。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Most current clamp studies trigger action potentials (APs) by step current injection through the recording electrode and assume that the resulting APs are essentially identical to those triggered by orthodromic synaptic inputs. However this assumption is not always valid, particularly when the synaptic conductance is of large magnitude and of close proximity to the axon initial segment. We addressed this question of similarity using the Calyx of Held/MNTB synapse; we compared APs evoked by long duration step current injections, short step current injections and orthodromic synaptic stimuli. Neither injected current protocol evoked APs that matched the evoked orthodromic AP waveform, showing differences in AP height, half-width and after-hyperpolarization. We postulated that this 'error' could arise from changes in the instantaneous conductance during the combined synaptic and AP waveforms, since the driving forces for the respective ionic currents are integrating and continually evolving over this time-course. We demonstrate that a simple Ohm's law manipulation of the EPSC waveform, which accounts for the evolving driving force on the synaptic conductance during the AP, produces waveforms that closely mimic those generated by physiological synaptic stimulation. This stimulation paradigm allows supra-threshold physiological stimulation (single stimuli or trains) without the variability caused by quantal fluctuation in transmitter release, and can be implemented without a specialised dynamic clamp system. Combined with pharmacological tools this method provides a reliable means to assess the physiological roles of postsynaptic ion channels without confounding affects from the presynaptic input.
机译:大多数电流钳研究都通过通过记录电极的逐步电流注入来触发动作电位(AP),并假设所得的AP与正畸突触输入触发的AP基本相同。但是,这种假设并不总是正确的,特别是当突触电导的大小较大且非常接近轴突初始节段时。我们使用了Held / MNTB突触花萼解决了这个相似性问题。我们比较了长时间持续电流注入,短期电流注入和正畸突触刺激引起的AP。两种注入电流协议均未诱发出与诱发的正交矫正AP波形相匹配的AP,这些AP显示出AP高度,半角宽度和超极化后的差异。我们推测,这种“误差”可能是由于突触和AP波形组合时瞬时电导的变化引起的,因为各个离子电流的驱动力在该时间过程中不断累积并不断发展。我们证明了简单的欧姆定律操作EPSC波形,它解释了AP期间对突触电导的不断发展的驱动力,产生的波形与生理性突触刺激产生的波形非常相似。这种刺激范式允许超阈值生理刺激(单个刺激或训练),而不会由于变送器释放中的数量波动而引起变化,并且可以在没有专门的动态钳位系统的情况下实现。结合药理学工具,该方法提供了一种可靠的方法来评估突触后离子通道的生理作用,而不会混淆突触前输入的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号