首页> 外文期刊>Journal of Neurophysiology >Computational study on monkey VOR adaptation and smooth pursuit based on the parallel control-pathway theory.
【24h】

Computational study on monkey VOR adaptation and smooth pursuit based on the parallel control-pathway theory.

机译:基于并行控制路径理论的猴子VOR适应和平稳追随的计算研究。

获取原文
获取原文并翻译 | 示例
           

摘要

Much controversy remains about the site of learning and memory for vestibuloocular reflex (VOR) adaptation in spite of numerous previous studies. One possible explanation for VOR adaptation is the flocculus hypothesis, which assumes that this adaptation is caused by synaptic plasticity in the cerebellar cortex. Another hypothesis is the model proposed by Lisberger that assumes that the learning that occurs in both the cerebellar cortex and the vestibular nucleus is necessary for VOR adaptation. Lisberger's model is characterized by a strong positive feedback loop carrying eye velocity information from the vestibular nucleus to the cerebellar cortex. This structure contributes to the maintenance of a smooth pursuit driving command with zero retinal slip during the steady-state phase of smooth pursuit with gain 1 or during the target blink condition. Here, we propose an alternative hypothesis that suggests that the pursuit driving command is maintained in the medial superior temporal (MST) area based on MST firing data during target blink and during ocular following blank, and as a consequence, we assume a much smaller gain for the positive feedback from the vestibular nucleus to the cerebellar cortex. This hypothesis is equivalent to assuming that there are two parallel neural pathways for controlling VOR and smooth pursuit: a main pathway of the semicircular canals to the vestibular nucleus for VOR, and a main pathway of the MST-dorsolateral pontine nuclei (DLPN)-flocculus/ventral paraflocculus to the vestibular nucleus for smooth pursuit. First, we theoretically demonstrate that this parallel control-pathway theory can reproduce the various firing patterns of horizontal gaze velocity Purkinje cells in the flocculus/ventral paraflocculus dependent on VOR in the dark, smooth pursuit, and VOR cancellation as reported in Miles et al. at least equally as well as the gaze velocity theory, which is the basic framework of Lisberger's model. Second, computer simulations based on our hypothesis can stably reproduce neural firing data as well as behavioral data obtained in smooth pursuit, VOR cancellation, and VOR adaptation, even if only plasticity in the cerebellar cortex is assumed. Furthermore, our computer simulation model can reproduce VOR adaptation automatically based on a heterosynaptic interaction model between parallel fiber inputs and climbing fiber inputs. Our results indicate that different assumptions about the site of pursuit driving command maintenance computationally lead to different conclusions about where the learning for VOR adaptation occurs. Finally, we propose behavioral and physiological experiments capable of discriminating between these two possibilities for the site of pursuit driving command maintenance and hence for the sites of learning and memory for VOR adaptation.
机译:尽管有许多先前的研究,但关于前庭反射(VOR)适应的学习和记忆部位仍存在许多争议。 VOR适应性的一种可能解释是小叶假说,该假说假设这种适应性是由小脑皮质的突触可塑性引起的。另一个假设是Lisberger提出的模型,该模型假设在小脑皮层和前庭核中都发生的学习对于VOR适应是必要的。 Lisberger模型的特征是强大的正反馈回路,可将眼速度信息从前庭核传递到小脑皮质。这种结构有助于在增益为1的平稳追随的稳态阶段或目标眨眼条件下,以零的视网膜滑差维持平稳的追随驾驶命令。在此,我们提出了另一种假设,该假设表明在目标眨眼期间和眼球跟踪消隐期间,基于MST触发数据在中上颞(MST)区域中保持跟踪驾驶命令,因此,我们假设增益要小得多从前庭核到小脑皮质的积极反馈。该假设等同于假设存在两条平行的神经通路来控制VOR和平滑追逐:VOR的半规管到前庭核的主要通路,以及MST背外侧桥脑核(DLPN)-絮团的主要通路/前房旁小结到前庭神经核的平滑追击。首先,我们从理论上证明,这种平行控制途径理论可以在黑暗,平稳的追赶和VOR抵消的作用下,重现V / V抵消的絮凝/腹旁絮中水平凝视速度Purkinje细胞的各种激发模式。至少与凝视速度理论(Lisberger模型的基本框架)一样。其次,即使仅假设小脑皮层具有可塑性,基于我们的假设的计算机模拟也可以稳定地重现神经放电数据以及通过平稳追踪,VOR消除和VOR适应获得的行为数据。此外,我们的计算机仿真模型可以基于并行光纤输入和攀爬光纤输入之间的异突触相互作用模型自动重现VOR适应。我们的结果表明,关于追击驾驶命令维护地点的不同假设在计算上得出关于VOR适应学习发生位置的不同结论。最后,我们提出了行为和生理实验,它们能够区分这两种可能性,即追随驾驶命令的维护地点,从而区分VOR适应的学习和记忆地点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号