...
首页> 外文期刊>Journal of Neurophysiology >Role of TTX-Sensitive and TTX-Resistant Sodium Channels in A{delta}- and C-Fiber Conduction and Synaptic Transmission.
【24h】

Role of TTX-Sensitive and TTX-Resistant Sodium Channels in A{delta}- and C-Fiber Conduction and Synaptic Transmission.

机译:TTX敏感和耐TTX的钠离子通道在Aδ和C纤维传导和突触传递中的作用。

获取原文
获取原文并翻译 | 示例

摘要

Thin afferent axons conduct nociceptive signals from the periphery to the spinal cord. Their somata express two classes of Na(+) channels, TTX-sensitive (TTX-S) and TTX-resistant (TTX-R), but their relative contribution to axonal conduction and synaptic transmission is not well understood. We studied this contribution by comparing effects of nanomolar TTX concentrations on currents associated with compound action potentials in the peripheral and central branches of Adelta- and C-fiber axons as well as on the Adelta- and C-fiber-mediated excitatory postsynaptic currents (EPSCs) in spinal dorsal horn neurons of rat. At room temperature, TTX completely blocked Adelta-fibers (IC(50), 5-7 nM) in dorsal roots (central branch) and spinal, sciatic, and sural nerves (peripheral branch). The C-fiber responses were blocked by 85-89% in the peripheral branch and by 65-66% in dorsal roots (IC(50), 14-33 nM) with simultaneous threefold reduction in their conduction velocity. At physiological temperature, the degree of TTX block in dorsal roots increased to 93%. The Adelta- and C-fiber-mediated EPSCs in dorsal horn neurons were also sensitive to TTX. At room temperature, 30 nM blocked completely Adelta-input and 84% of the C-fiber input, which was completely suppressed at 300 nM TTX. We conclude that in mammals, the TTX-S Na(+) channels dominate conduction in all thin primary afferents. It is the only type of functional Na(+) channel in Adelta-fibers. In C-fibers, the TTX-S Na(+) channels determine the physiological conduction velocity and control synaptic transmission. TTX-R Na(+) channels could not provide propagation of full-amplitude spikes able to trigger synaptic release in the spinal cord.
机译:细小的传入轴突从外周向脊髓传导伤害性信号。他们的躯体表达两类Na(+)通道,TTX敏感(TTX-S)和TTX抗性(TTX-R),但是它们对轴突传导和突触传递的相对贡献尚不十分清楚。我们通过比较纳米摩尔TTX浓度对与Adelta和C纤维轴突的外围和中央分支中复合动作电位相关的电流以及对Adelta和C纤维介导的兴奋性突触后电流(EPSC)的影响,研究了这一贡献。 )在大鼠的脊髓背角神经元中。在室温下,TTX完全阻断了背根(中央分支)和脊髓,坐骨神经和腓肠神经(外周分支)中的Adelta纤维(IC(50),5-7 nM)。 C纤维反应被阻止在外围分支中的85-89%和在背根(IC(50),14-33 nM)中的65-66%,同时其传导速度降低了三倍。在生理温度下,背根中的TTX阻滞程度增加到93%。背角神经元中由Adelta和C纤维介导的EPSC对TTX也敏感。在室温下,30 nM完全阻塞了Adelta输入,而84%的C光纤输入被300 NMT TTX完全抑制了。我们得出的结论是,在哺乳动物中,TTX-S Na(+)通道在所有较薄的初级传入神经中均占主导地位。它是Adelta纤维中唯一的功能性Na(+)通道类型。在C纤维中,TTX-S Na(+)通道确定生理传导速度并控制突触传递。 TTX-R Na(+)通道无法提供能够触发脊髓中突触释放的全振幅尖峰的传播。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号