...
首页> 外文期刊>Journal of Micromechanics and Microengineering >Anodic bonding using SOI wafer for fabrication of capacitive micromachined ultrasonic transducers
【24h】

Anodic bonding using SOI wafer for fabrication of capacitive micromachined ultrasonic transducers

机译:使用SOI晶圆进行阳极键合以制造电容式微加工超声换能器

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In medical ultrasound imaging, mostly piezoelectric crystals are used as ultrasonic transducers. Capacitive micromachined ultrasonic transducers (CMUTs) introduced around 1994 have been shown to be a good alternative to conventional piezoelectric transducers in various aspects, such as sensitivity, transduction efficiency or bandwidth. This paper focuses on a fabrication process for CMUTs using anodic bonding of a silicon on insulator wafer on a glass wafer. The processing steps are described leading to a good control of the mechanical response of the membrane. This technology makes possible the fabrication of large membranes and can extend the frequency range of CMUTs to lower frequencies of operation. Silicon membranes having radii of 50, 70, 100 and 150 μm and a 1.5 μm thickness are fabricated and electromechanically characterized using an auto-balanced bridge impedance analyzer. Resonant frequencies from 0.6 to 2.3 MHz and an electromechanical coupling coefficient around 55% are reported. The effects of residual stress in the membranes and uncontrolled clamping conditions are clearly responsible for the discrepancies between experimental and theoretical values of the first resonance frequency. The residual stress in the membranes is determined to be between 90 and 110 MPa. The actual boundary conditions are between the clamped condition and the simply supported condition and can be modeled with a torsional stiffness of 2.10~(-7) Nm rad~(-1) in the numerical model.
机译:在医学超声成像中,大部分压电晶体被用作超声换能器。 1994年左右推出的电容式微加工超声换能器(CMUT)在各种方面(例如灵敏度,转换效率或带宽)可以很好地替代传统的压电换能器。本文重点介绍了使用硅在玻璃晶片上的绝缘体晶片上进行阳极键合的CMUT制造工艺。描述了导致对膜的机械响应的良好控制的处理步骤。该技术使制造大型膜成为可能,并且可以将CMUT的频率范围扩展到较低的工作频率。制造半径为50、70、100和150μm且厚度为1.5μm的硅膜,并使用自动平衡桥阻抗分析仪进行机电表征。据报道,谐振频率为0.6到2.3 MHz,机电耦合系数约为55%。膜中的残余应力和不受控制的夹紧条件的影响显然是造成第一共振频率的实验值与理论值之间差异的原因。膜中的残余应力确定为90至110 MPa。实际边界条件在夹紧条件和简单支撑条件之间,并且可以在数值模型中以2.10〜(-7)Nm rad〜(-1)的扭转刚度建模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号