...
首页> 外文期刊>Journal of Micromechanics and Microengineering >Observation of a carbon-based protective layer on the sidewalls of boron doped ultrananocrystalline diamond-based MEMS during in situ tribotests
【24h】

Observation of a carbon-based protective layer on the sidewalls of boron doped ultrananocrystalline diamond-based MEMS during in situ tribotests

机译:在原位摩擦测试中观察到硼掺杂的超纳米晶金刚石基MEMS侧壁上的碳基保护层

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We have fabricated dedicated MEMS tribotesters made from boron doped ultrananocrystalline diamond (B-UNCD) as the structural material, and carried out comprehensive nano-tribological measurements when two B-UNCD sidewall surfaces underwent sliding interaction in a micro-electromechanical systems (MEMS) in a humid and dry atmosphere. We have investigated the evolution of tribological contacts during sliding interactions and corresponding surface modification under repeated cyclic sliding conditions, while measuring displacement and lateral force with 4 nm and 64 nN resolution, respectively. We have observed the formation of carbon-based ultra-thin protective layer at the sliding interface as characterized by Raman spectroscopy and scanning electron microscopy. Interestingly, the formation of this protective layer occurs in both a dry and wet atmosphere, albeit at different rates when the energy dissipated due to friction reaches a plateau, starting from 200 000 and 400 000 cycles, respectively. Once this layer is formed, we do not observe any measurable wear indicating stable operation for an extended time period. Our results demonstrate that B-UNCD is a very promising material to overcome the wear-related reliability problems in MEMS.
机译:我们已经制造了由硼掺杂的超纳米晶金刚石(B-UNCD)作为结构材料制成的专用MEMS三botester,并且当两个B-UNCD侧壁表面在微机电系统(MEMS)中经历滑动相互作用时,进行了全面的纳米摩擦学测量。潮湿干燥的气氛。我们已经研究了在反复循环滑动条件下滑动相互作用和相应的表面改性过程中摩擦学接触的演变,同时分别以4 nm和64 nN分辨率测量位移和侧向力。通过拉曼光谱和扫描电子显微镜观察,我们已经观察到在滑动界面上形成了碳基超薄保护层。有趣的是,该保护层的形成在干燥和潮湿的气氛中均发生,尽管当由于摩擦而耗散的能量分别到达200 000和40万个周期达到平稳状态时,其形成速率不同。一旦形成该层,我们就不会观察到任何可测量的磨损,表明在较长的时间段内稳定运行。我们的结果表明,B-UNCD是克服MEMS中与磨损相关的可靠性问题的非常有前途的材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号