...
首页> 外文期刊>Journal of Neurochemistry: Offical Journal of the International Society for Neurochemistry >Increased mitochondrial antioxidative activity or decreased oxygen free radical propagation prevent mutant SOD1-mediated motor neuron cell death and increase amyotrophic lateral sclerosis-like transgenic mouse survival.
【24h】

Increased mitochondrial antioxidative activity or decreased oxygen free radical propagation prevent mutant SOD1-mediated motor neuron cell death and increase amyotrophic lateral sclerosis-like transgenic mouse survival.

机译:线粒体抗氧化活性的增加或氧自由基的传播减少可防止突变型SOD1介导的运动神经元细胞死亡,并增加肌萎缩性侧索硬化样转基因小鼠的存活。

获取原文
获取原文并翻译 | 示例

摘要

The molecular mechanisms of selective motor neuron degeneration in human amyotrophic lateral sclerosis (ALS) disease remain largely unknown and effective therapies are not currently available. Mitochondrial dysfunction is an early event of motor neuron degeneration in transgenic mice overexpressing mutant superoxide dismutase (SOD)1 gene and mitochondrial abnormality is observed in human ALS patients. In an in vitro cell culture system, we demonstrated that infection of mouse NSC-34 motor neuron-like cells with adenovirus containing mutant G93A-SOD1 gene increased cellular oxidative stress, mitochondrial dysfunction, cytochrome c release and motor neuron cell death. Cells pretreated with highly oxidizable polyunsaturated fatty acid elevated lipid peroxidation and synergistically exacerbated motor neuron-like cell death with mutant G93A-SOD1 but not with wild-type SOD1. Similarly, overexpression of mitochondrial antioxidative genes, MnSOD and GPX4 by stable transfection significantly increased NSC-34 motor neuron-like cell resistance to mutant SOD1. Pre-incubation of cells with spin trapping molecule, 5',5'-dimethylpryrroline-N-oxide (DMPO), prevented mutant SOD1-mediated mitochondrial dysfunction and cell death. Furthermore, treatment of mutant G93A-SOD1 transgenic mice with DMPO significantly delayed paralysis and increased survival. These findings suggest a causal relationship between enhanced oxidative stress and mutant SOD1-mediated motor neuron degeneration, considering that enhanced oxygen free radical production results from the SOD1 structural alterations. Molecular approaches aimed at increasing mitochondrial antioxidative activity or effectively blocking oxidative stress propagation can be potentially useful in the clinical management of human ALS disease.
机译:在人类肌萎缩性侧索硬化症(ALS)疾病中选择性运动神经元变性的分子机制仍然是未知的,目前尚无有效的疗法。线粒体功能障碍是过度表达突变型超氧化物歧化酶(SOD)1基因的转基因小鼠中运动神经元变性的早期事件,在人类ALS患者中观察到线粒体异常。在体外细胞培养系统中,我们证明了用含有突变G93A-SOD1基因的腺病毒感染小鼠NSC-34运动神经元样细胞会增加细胞氧化应激,线粒体功能障碍,细胞色素c释放和运动神经元细胞死亡。高度可氧化的多不饱和脂肪酸预处理的细胞可增加脂质过氧化作用,并与突变型G93A-SOD1协同加剧运动神经元样细胞死亡,而野生型SOD1则不然。同样,通过稳定转染的线粒体抗氧化基因,MnSOD和GPX4的过表达显着增加了NSC-34运动神经元样细胞对突变SOD1的抗性。用自旋捕获分子5',5'-二甲基吡咯啉-N-氧化物(DMPO)预孵育细胞可防止突变的SOD1介导的线粒体功能障碍和细胞死亡。此外,用DMPO处理突变的G93A-SOD1转基因小鼠显着延迟了麻痹并提高了存活率。这些发现表明氧化应激增强与突变的SOD1介导的运动神经元变性之间存在因果关系,考虑到增强的氧自由基产生是由SOD1结构改变导致的。旨在增加线粒体抗氧化活性或有效阻断氧化应激传播的分子方法可能在人类ALS疾病的临床管理中可能有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号