...
首页> 外文期刊>Journal of Neurochemistry: Offical Journal of the International Society for Neurochemistry >Elucidating the murine brain transcriptional network in a segregating mouse population to identify core functional modules for obesity and diabetes.
【24h】

Elucidating the murine brain transcriptional network in a segregating mouse population to identify core functional modules for obesity and diabetes.

机译:阐明分离的小鼠群体中的鼠脑转录网络,以鉴定肥胖症和糖尿病的核心功能模块。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Complex biological systems are best modeled as highly modular, fluid systems exhibiting a plasticity that allows them to adapt to a vast array of changing conditions. Here we highlight several novel network-based approaches to elucidate genetic networks underlying complex traits. These integrative genomic approaches combine large-scale genotypic and gene expression results in segregating mouse populations to reconstruct reliable genetic networks underlying complex traits such as disease or drug response. We apply these novel approaches to one of the most extensive surveys of gene expression studies ever undertaken in whole brain in a segregating mouse population. More than 23,000 genes were monitored in whole brain samples from more than 300 mice derived from an F2 intercross population and genotyped at over 1200 SNP markers uniformly spread over the entire genome. We explore the topological properties of the brain transcriptional network and highlight different approaches to inferring causal associations among genes by integrating genotypic and expression data. We demonstrate the utility of these approaches by identifying and experimentally validating brain gene expression traits predicted to respond to a strong expression quantitative trait locus (eQTL) for the pituitary tumor-transforming 1 gene (Pttg1) that coincides with the physical location of this gene (a cis eQTL). We identify core functional modules making up the brain transcriptional network in mice that are coherent for core biological processes associated with metabolic disease traits including obesity and diabetes.
机译:最好将复杂的生物系统建模为高度模块化的流体系统,该系统具有可塑性,可使其适应各种变化的条件。在这里,我们重点介绍了几种新颖的基于网络的方法来阐明复杂性状的遗传网络。这些整合的基因组方法将大规模的基因型和基因表达结果结合在一起,从而分离出小鼠种群,以构建可靠的遗传网络,这些遗传网络是诸如疾病或药物反应等复杂特征的基础。我们将这些新颖的方法应用于有史以来在全脑中分离的小鼠群体中进行的最广泛的基因表达研究之一。在来自F2交叉种群的300多只小鼠的全脑样本中监测了超过23,000个基因,并在均匀分布于整个基因组的1200个SNP标记上进行了基因分型。我们探索了大脑转录网络的拓扑特性,并突出了通过整合基因型和表达数据来推断基因之间因果关联的不同方法。我们通过鉴定和实验验证预测对垂体肿瘤转化1基因(Pttg1)的强表达定量性状基因座(eQTL)响应的脑基因表达特征来证明这些方法的实用性,该基因与该基因的物理位置相符(顺式eQTL)。我们确定了小鼠大脑转录网络的核心功能模块,这些模块与与肥胖和糖尿病等代谢性疾病相关的核心生物学过程相一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号