首页> 外文期刊>Journal of neurobiology >High-resolution analysis of neuronal growth cone morphology by comparative atomic force and optical microscopy.
【24h】

High-resolution analysis of neuronal growth cone morphology by comparative atomic force and optical microscopy.

机译:通过比较原子力和光学显微镜对神经元生长锥形态进行高分辨率分析。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Neuronal growth cones are motile sensory structures at the tip of axons, transducing guidance information into directional movements towards target cells. The morphology and dynamics of neuronal growth cones have been well characterized with optical techniques; however, very little quantitative information is available on the three-dimensional structure and mechanical properties of distinct subregions. In the present study, we imaged the large Aplysia growth cones after chemical fixation with the atomic force microscope (AFM) and directly compared our data with images acquired by light microscopy methods. Constant force imaging in contact mode in combination with force-distant measurements revealed an average height of 200 nm for the peripheral (P) domain, 800 nm for the transition (T) zone, and 1200 nm for the central (C) domain, respectively. The AFM images show that the filopodial F-actin bundles are stiffer than surrounding F-actin networks. Enlarged filopodia tips are 60 nm higher than the corresponding shafts. Measurements of the mechanical properties of the specific growth cone regions with the AFM revealed that the T zone is stiffer than the P and the C domain. Direct comparison of AFM and optical data acquired by differential interference contrast and fluorescence microscopy revealed a good correlation between these imaging methods. However, the AFM provides height and volume information at higher resolution than fluorescence methods frequently used to estimate the volume of cellular compartments. These findings suggest that AFM measurements on live growth cones will provide a quantitative understanding of how proteins can move between different growth cone regions.
机译:神经元生长锥是轴突尖端的运动感觉结构,将引导信息转化为朝向靶细胞的定向运动。神经元生长锥的形态和动力学已通过光学技术很好地表征。但是,关于不同分区的三维结构和力学性能的定量信息很少。在本研究中,我们使用原子力显微镜(AFM)对化学固定后的大海葵生长锥进行了成像,并将我们的数据与通过光学显微镜方法获得的图像直接进行了比较。接触模式下的恒定力成像结合力距测量结果分别显示,外围(P)域的平均高度为200 nm,过渡(T)区的平均高度为800 nm,中心(C)域的平均高度为1200 nm。 。 AFM图像显示,腓肠F-肌动蛋白束比周围的F-肌动蛋白网络坚硬。扩大的丝状伪足尖端比相应的杆高60 nm。用原子力显微镜对特定生长锥区域的机械性能进行的测量表明,T区比P区和C区硬。通过微分干涉对比和荧光显微镜对AFM和光学数据的直接比较揭示了这些成像方法之间的良好相关性。但是,与经常用于估计细胞室体积的荧光方法相比,原子力显微镜能以更高的分辨率提供高度和体积信息。这些发现表明,在活的生长锥上进行AFM测量可以定量了解蛋白质如何在不同的生长锥区域之间移动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号