...
首页> 外文期刊>Journal of natural gas science and engineering >Numerical investigation of fluid-driven near-borehole fracture propagation in laminated reservoir rock using PFC2D
【24h】

Numerical investigation of fluid-driven near-borehole fracture propagation in laminated reservoir rock using PFC2D

机译:基于PFC2D的层状储层流体驱动近孔裂缝扩展数值研究。

获取原文
获取原文并翻译 | 示例
           

摘要

Hydraulic fracturing is a useful tool for enhancing permeability for shale gas development, enhanced geothermal systems, and geological carbon sequestration using high-pressure injection of a fracturing fluid into tight reservoir rocks. Mechanisms of fluid injection-induced fracture initiation and propagation should be well understood to take full advantage of hydraulic fracturing. In this paper, hydraulic fracturing modeling work was developed using discrete particle modeling based on two-dimensional particle flow code (PFC2D). Firstly, the developed model is validated against the analytical solutions of the breakdown pressure for the hydraulic fracturing process under varied in-situ stress conditions. Secondly, the model is tested using the microscopic parameters optimized from laboratory Uniaxial Compressive Test for laminated reservoir rock. Lastly, a series of hydraulic fracturing simulation work was performed to study the influence of weak layers, in-situ stress ratio, fluid injection rate and fluid viscosity on the borehole pressure history, the geometry of hydraulic fractures and the pore-pressure field. It is found that the hydraulic fracture propagation in laminated reservoir is controlled by both in situ stress state and strength anisotropy of the reservoir rock. With fluid injection rate increasing, higher breakdown pressure is required for fracture propagation and complex fracture geometry will develop. Furthermore, low viscosity fluid can more easily penetrate from the borehole into the surrounding rock, causing a reduction of the effective stress and leading to a lower breakdown pressure. Moreover, the geometry, of the fractures is found to be sensitive to the fluid viscosity, and the major fractures propagate more easily along the maximum principle stress direction. (C) 2016 Elsevier B.V. All rights reserved.
机译:水力压裂是一种有用的工具,可通过向致密的储层岩石中高压注入压裂液来提高页岩气开发,增强的地热系统和地质固碳的渗透性。为了充分利用水力压裂优势,应该很好地理解流体注入引起的裂缝萌生和扩展的机理。本文基于二维粒子流代码(PFC2D),使用离散粒子建模开发了水力压裂建模工作。首先,针对不同现场应力条件下水力压裂过程的破裂压力解析解,验证了所建立的模型。其次,使用实验室单轴压缩试验优化的微观参数对层状储层岩石进行测试。最后,进行了一系列水力压裂模拟工作,研究了薄弱层,原地应力比,流体注入速率和流体黏度对井眼压力历史,水力压裂的几何形状和孔隙压力场的影响。研究发现,层状储层的水力压裂扩展受原位应力状态和储层岩石强度各向异性的控制。随着流体注入速率的增加,裂缝扩展需要更高的击穿压力,并且将形成复杂的裂缝几何形状。此外,低粘度流体可以更容易地从钻孔渗透到周围的岩石中,从而导致有效应力的减小并且导致更低的击穿压力。此外,发现裂缝的几何形状对流体粘度敏感,并且主要裂缝沿着最大主应力方向更容易传播。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号