...
首页> 外文期刊>Chemical Engineering & Technology: Industrial Chemistry -Plant Equipment -Process Engineering -Biotechnology >In situ Determination of Fuel Particle Reaction Rates by Simultaneous Measurement of Particle Temperature and Size
【24h】

In situ Determination of Fuel Particle Reaction Rates by Simultaneous Measurement of Particle Temperature and Size

机译:通过同时测量颗粒温度和尺寸来原位确定燃料颗粒反应速率

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The most widespread example of gas-solids reactions in practice is the combustion of solid fossil fuels for power and/or heat production. One possibility of efficiency enhancement provide combined gas and steam turbine processes with pressurized combustion, as have been applied in the recent decades in power generation from liquid energy sources. The exploitation of this potential concerning solid fossil fuels is the subject of research and development worldwide. In this context, the mechanism of the char burning under elevated pressure has so far been scarcely studied. Yet this mechanism is the determinating factor of the attainable reaction rates and the necessary particle residence times that hence are the parameters for the plant size of such a pressurized furnace. In conventional atmospheric power plants, the reaction rate of particle combustion plays an important part, too. The highest possible particle burnout degree on the one hand provides that a high thermal efficiency is attained and on the other hand determines the quality of the ash as a byproduct. For the current practice of using the obtained power plant ash as aggregate in the cement industry, a loss at red heat of 5% by weight must not be exceeded. The present report describes investigations examining the combustion behavior of char particles under conditions of high temperature and pressure by means of in situ determination of the reaction rates. On the basis of the two possible reaction paths - i.e., primary oxidation of carbon into carbon monoxide or carbon dioxide, respectively - a comparison is made between the measured reaction rates and the theoretical maxima.
机译:实际上,气固反应最普遍的例子是燃烧固体化石燃料以产生电力和/或热量。效率提高的一种可能性是为燃气轮机和蒸汽轮机的组合工艺提供加压燃烧,正如近几十年来在液态能源发电中所应用的那样。关于固体化石燃料的这种潜力的利用是全世界研究和开发的主题。在这种情况下,迄今为止几乎没有研究过炭在高压下燃烧的机理。然而,该机制是可达到的反应速率和必要的颗粒停留时间的决定因素,因此是这种加压炉的工厂规模的参数。在常规的大气发电厂中,颗粒燃烧的反应速率也起着重要的作用。尽可能高的颗粒燃尽程度一方面提供了高的热效率,另一方面确定了作为副产物的灰分的质量。对于在水泥工业中使用所获得的电厂灰作为骨料的当前实践,不得超过5%重量的赤热损失。本报告描述了通过现场确定反应速率来检查炭颗粒在高温和高压条件下的燃烧行为的研究。基于两种可能的反应路径-即分别将碳一次氧化为一氧化碳或二氧化碳-在测得的反应速率和理论最大值之间进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号