首页> 外文期刊>Journal of Non-Newtonian Fluid Mechanics >A stable unstructured finite volume method for parallel large-scale viscoelastic fluid flow calculations
【24h】

A stable unstructured finite volume method for parallel large-scale viscoelastic fluid flow calculations

机译:用于并行大规模粘弹性流体流动计算的稳定非结构有限体积方法

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A new stable unstructured finite volume method is presented for parallel large-scale simulation of viscoelastic fluid flows. The numerical method is based on the side-centered finite volume method where the velocity vector components are defined at the mid-point of each cell face, while the pressure term and the extra stress tensor are defined at element centroids. The present arrangement of the primitive variables leads to a stable numerical scheme and it does not require any ad-hoc modifications in order to enhance the pressure-velocity-stress coupling. The log-conformation representation proposed in [R. Fattal, R. Kupferman, Constitutive laws for the matrix-logarithm of the conformation tensor, J. Non-Newtonian Fluid Mech. 123 (2004) 281-285] has been implemented in order improve the limiting Weissenberg numbers in the proposed finite volume method. The time stepping algorithm used decouples the calculation of the polymeric stress by solution of a hyperbolic constitutive equation from the evolution of the velocity and pressure fields by solution of a generalized Stokes problem. The resulting algebraic linear systems are solved using the FGMRES(m) Krylov iterative method with the restricted additive Schwarz preconditioner for the extra stress tensor and the geometric non-nested multilevel preconditioner for the Stokes system. The implementation of the preconditioned iterative solvers is based on the PETSc library for improving the efficiency of the parallel code. The present numerical algorithm is validated for the Kovasznay flow, the flow of an Oldroyd-B fluid past a confined circular cylinder in a channel and the three-dimensional flow of an Oldroyd-B fluid around a rigid sphere falling in a cylindrical tube. Parallel large-scale calculations are presented up to 523,094 quadrilateral elements in two-dimension and 1,190,376 hexahedral elements in three-dimension.
机译:提出了一种新的稳定的非结构化有限体积方法,用于粘弹性流体的并行大规模模拟。数值方法基于侧心有限体积法,其中速度矢量分量定义在每个单元面的中点,而压力项和额外应力张量定义在单元质心。基本变量的当前布置导致稳定的数值方案,并且不需要任何临时修改即可增强压力-速度-应力耦合。 [R. Fattal,R。Kupferman,构象张量矩阵对数的本构律,J。Non-Newtonian Fluid Mech。 123(2004)281-285]已被实施,以改进所提出的有限体积法中的极限魏森伯格数。所用的时间步长算法通过广义斯托克斯问题的求解,将双曲本构方程的解与聚合的应力计算与速度场和压力场的演化解耦。生成的代数线性系统使用FGMRES(m)Krylov迭代方法进行求解,该方法具有用于额外应力张量的受限加性Schwarz预调节器和用于Stokes系统的几何非嵌套多级预处理器。预处理迭代求解器的实现基于PETSc库,用于提高并行代码的效率。对于Kovasznay流量,Oldroyd-B流体流经通道中的受限圆柱体以及Oldroyd-B流体绕刚性球体落入圆柱管的三维流,对本数值算法进行了验证。并行的大规模计算在二维中最多显示523,094个四边形元素,在三维中最多显示1,190,376个六面体元素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号