...
首页> 外文期刊>Journal of Materials Engineering and Performance >Effect of Carbide Ceramic Zone on Wear Resistance of the (Fe,Cr)(7)C-3/Fe Surface Gradient Composite
【24h】

Effect of Carbide Ceramic Zone on Wear Resistance of the (Fe,Cr)(7)C-3/Fe Surface Gradient Composite

机译:碳化物陶瓷区对(Fe,Cr)(7)C-3 / Fe表面梯度复合材料耐磨性的影响

获取原文
获取原文并翻译 | 示例

摘要

In this work, we report on the influence of microstructure and mechanical properties of the (Fe,Cr)(7)C-3 ceramic zone on wear resistance of the (Fe,Cr)(7)C-3/Fe surface gradient composite fabricated by in situ synthesis method followed by a post-heat treatment at 1100 A degrees C for 20 h in argon atmosphere. The phase composition, microstructure, nanoindentation hardness, elastic modulus, fracture toughness, and relative wear resistance of the (Fe,Cr)(7)C-3/Fe surface gradient composite were investigated by means of x-ray diffraction, scanning electron microscopy, nanoindentation tester, and wear resistance testing instrument, respectively. The XRD results showed that (Fe,Cr)(7)C-3 is the predominant crystalline phases in the fabricated composite. The volume fraction of the (Fe,Cr)(7)C-3 particulates formed has a gradient distribution from the surface to the iron matrix, and the microstructure also changes significantly. The (Fe,Cr)(7)C-3 bulk ceramic zone with the volume fraction of about 100% and the (Fe,Cr)(7)C-3 dense ceramic zone with the volume fraction of about 90% were synthesized on the upper surface of the (Fe,Cr)(7)C-3/Fe surface gradient composite, respectively. The average nanoindentation hardness and elastic modulus of the (Fe,Cr)(7)C-3 bulk ceramic zone of the composite were determined to be 12.711 and 256.054 GPa, respectively. The fracture toughness of the (Fe,Cr)(7)C-3 bulk ceramic zone is in the range of 2.06-4.19 MPa m(1/2), and its relative wear resistance is about 56 times higher than that of the iron matrix. The (Fe,Cr)(7)C-3 dense ceramic zone with rod-like, secondary (Fe,Cr)(7)C-3 particulates was formed at the bottom of the (Fe,Cr)(7)C-3 bulk ceramic zone. Rod-like, secondary (Fe,Cr)(7)C-3 particulates are dense and grew in the direction of the iron substrate, providing higher wear resistance to the composite. The wear mechanisms of the (Fe,Cr)(7)C-3 bulk and dense ceramic zones are considered to be microcutting, microcracking, and spalling pit.
机译:在这项工作中,我们报告(Fe,Cr)(7)C-3陶瓷区的显微组织和力学性能对(Fe,Cr)(7)C-3 / Fe表面梯度复合材料耐磨性的影响通过原位合成方法制备的材料,然后在氩气中于1100 A摄氏度进行20小时的后热处理。利用X射线衍射,扫描电子显微镜研究了(Fe,Cr)(7)C-3 / Fe表面梯度复合材料的相组成,微观结构,纳米压痕硬度,弹性模量,断裂韧性和相对耐磨性。 ,纳米压痕测试仪和耐磨性测试仪。 XRD结果表明,(Fe,Cr)(7)C-3是所制备复合材料中的主要晶相。形成的(Fe,Cr)(7)C-3颗粒的体积分数具有从表面到铁基体的梯度分布,并且微观结构也发生了显着变化。合成了体积分数约为100%的(Fe,Cr)(7)C-3块状陶瓷区和体积分数约为90%的(Fe,Cr)(7)C-3致密陶瓷区。 (Fe,Cr)(7)C-3 / Fe表面梯度复合材料的上表面。该复合材料的(Fe,Cr)(7)C-3块状陶瓷区域的平均纳米压痕硬度和弹性模量分别确定为12.711和256.054 GPa。 (Fe,Cr)(7)C-3整体陶瓷区的断裂韧性在2.06-4.19 MPa m(1/2)的范围内,其相对耐磨性约为铁的56倍矩阵。在(Fe,Cr)(7)C-的底部形成具有棒状次级(Fe,Cr)(7)C-3颗粒的(Fe,Cr)(7)C-3致密陶瓷区3块陶瓷区。棒状次级(Fe,Cr)(7)C-3颗粒致密并在铁基材的方向上生长,为复合材料提供了更高的耐磨性。 (Fe,Cr)(7)C-3块状和致密陶瓷区的磨损机理被认为是微切割,微裂纹和剥落坑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号