首页> 外文期刊>Journal of Materials Chemistry, C. materials for optical and electronic devices >The electronic and optical properties of silicene/g-ZnS heterobilayers: a theoretical study
【24h】

The electronic and optical properties of silicene/g-ZnS heterobilayers: a theoretical study

机译:Silicene / g-ZnS异质双层的电子和光学性质:理论研究

获取原文
获取原文并翻译 | 示例
       

摘要

Two-dimensional (2D) nanomaterials have rapidly become the superstars in the fields of nanoelectronics, materials science, and energy storage because of their unusual properties, originating from the quantum size effects. Here we present a systematic theoretical investigation of the electronic and optical properties of silicene/g-ZnS heterobilayers, by means of dispersion-corrected density functional theory (DFT-D) computations. Depending on the stacking, the orbital hybridization or weak interaction defines the conformation of silicene/g-ZnS heterobilayers and contributes to their stability. Unlike silicene, the silicene/g-ZnS heterobilayer in the most stable stacking is a direct band gap semiconductor with a rather low effective mass, which indicates that the heterobilayer has a high carrier mobility. Applying an appropriate external electric field (E-field) or biaxial tensile strain with different strengths, the band gap of the silicene/g-ZnS heterobilayer can be effectively tuned, and correspondingly results in a semiconductor metal transition. Meanwhile, with increase of the E-field strength, the binding strength of the silicene/g-ZnS heterobilayer can be significantly enhanced. Especially, changing the direction and strength of the external E-field can significantly modulate its work function in a wide range. From analysis of the dielectric function and the absorption coefficient, it is evident that the optical properties of silicene are largely preserved in the heterobilayer, meanwhile, the silicene/g-ZnS heterobilayer exhibits some unique optical properties in the visible light irradiation range. Our findings pave the way for experimental research in the development of 2D materials science using heterostructures and indicate the great application potential of silicene/g-ZnS heterobilayers in future nanoelectronics and optoelectronics.
机译:二维(2D)纳米材料由于其不寻常的特性(源自量子尺寸效应)而迅速成为纳米电子学,材料科学和能量存储领域的超级明星。在这里,我们借助于色散校正的密度泛函理论(DFT-D)计算,对硅/ g-ZnS异质双分子层的电子和光学性质进行了系统的理论研究。取决于堆叠,轨道杂交或弱相互作用定义了硅/ g-ZnS异质双分子层的构象,并有助于它们的稳定性。与硅烯不同,硅/ g-ZnS异质双分子层中最稳定的堆叠是具有相当低有效质量的直接带隙半导体,这表明异质双分子层具有高的载流子迁移率。施加适当的外部电场(电场)或具有不同强度的双轴拉伸应变,可以有效地调整硅/ g-ZnS异质双分子层的带隙,并相应地导致半导体金属跃迁。同时,随着电场强度的增加,可以显着增强硅/ g-ZnS异质双层的结合强度。特别是,改变外部电场的方向和强度可以在很大范围内显着调节其功函数。通过对介电函数和吸收系数的分析,可以看出,在异质双分子层中很大程度上保留了硅的光学性质,同时,硅/ g-ZnS异质双分子层在可见光照射范围内表现出一些独特的光学性质。我们的发现为使用异质结构开发2D材料科学的实验研究铺平了道路,并表明了硅/ g-ZnS异质双分子层在未来的纳米电子学和光电子学中的巨大应用潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号