首页> 外文期刊>Journal of Materials Chemistry, C. materials for optical and electronic devices >Artificial opal photonic crystals and inverse opal structures - fundamentals and applications from optics to energy storage
【24h】

Artificial opal photonic crystals and inverse opal structures - fundamentals and applications from optics to energy storage

机译:人造蛋白石光子晶体和反蛋白石结构-从光学到能量存储的基本原理和应用

获取原文
获取原文并翻译 | 示例
       

摘要

Photonic crystals (PhCs) influence the propagation of light by their periodic variation in dielectric contrast or refractive index. This review outlines the attractive optical qualities inherent to most PhCs namely the presence of full or partial photonic band gaps and the possibilities they present towards the inhibition of spontaneous emission and the localization of light. Colloidal self-assembly of polymer or silica spheres is one of the most favoured and low cost methods for the formation of PhCs as artificial opals. The state of the art in growth methods currently used for colloidal self-assembly are discussed and the use of these structures for the formation of inverse opal architectures is then presented. Inverse opal structures with their porous and interconnected architecture span several technological arenas - optics and optoelectronics, energy storage, communications, sensor and biological applications. This review presents several of these applications and an accessible overview of the physics of photonic crystal optics that may be useful for opal and inverse opal researchers in general, with a particular emphasis on the recent use of these three-dimensional porous structures in electrochemical energy storage technology. Progress towards all-optical integrated circuits may lie with the concepts of the photonic crystal, but the unique optical and structural properties of these materials and the convergence of PhC and energy storage disciplines may facilitate further developments and non-destructive optical analysis capabilities for (electro) chemical processes that occur within a wide variety of materials in energy storage research.
机译:光子晶体(PhC)通过其介电对比度或折射率的周期性变化来影响光的传播。这篇综述概述了大多数PhC固有的吸引人的光学质量,即存在全部或部分光子带隙,以及它们存在的抑制自发发射和光定位的可能性。聚合物或二氧化硅球的胶体自组装是形成PhC人工蛋白石的最受青睐和低成本方法之一。讨论了目前用于胶体自组装的生长方法的技术发展水平,然后介绍了这些结构在反蛋白石结构形成中的用途。具有多孔互连结构的反蛋白石结构跨越了多个技术领域-光学和光电,能量存储,通信,传感器和生物应用。这篇综述介绍了这些应用中的几种,并对光子晶体光学的物理学进行了概述,这可能总体上对蛋白石和反蛋白石研究人员有用,尤其着重于这些三维多孔结构在电化学储能中的最新应用技术。向全光集成电路的进展可能取决于光子晶体的概念,但是这些材料的独特光学和结构特性以及PhC和能量存储学科的融合可能会促进进一步发展和无损光学分析功能的发展。 )在能量存储研究中发生在多种材料中的化学过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号