首页> 外文期刊>Journal of Materials Chemistry, C. materials for optical and electronic devices >Effects of edge hydrogenation in zigzag silicon carbide nanoribbons: stability, electronic and magnetic properties, as well as spin transport property
【24h】

Effects of edge hydrogenation in zigzag silicon carbide nanoribbons: stability, electronic and magnetic properties, as well as spin transport property

机译:之字形碳化硅纳米带中边缘氢化的影响:稳定性,电子和磁性以及自旋输运性质

获取原文
获取原文并翻译 | 示例
       

摘要

Based on density functional theory and nonequilibrium Green's function method, we systematically investigated the hydrogenated effects on the stability, electronic and magnetic properties, as well as electronic spin transport property of an N chains zigzag silicon carbide nanoribbon (N-ZSiC NR), Our calculated results indicate that by controlling the hydrogen content of the environment, one can get three types of stable edge hydrogenated ZSiC NRs. They are: (a) each edge Si and C atom bonded with one hydrogen atom (N-ZSiC-1H1H), (b) each edge Si atom bonded with two H atoms and each edge C bonded with one H atom (N-ZSiC-2H1H), and (c) each edge Si and C atom bonded with two H atoms (N-ZSiC-2H2H). It was unexpectedly found that N-ZSiC-1 H1H NR, which has been studied theoretically to a large extent, is stable only at extremely low ultravacuum pressures. Under more standard conditions, the most stable edge hydrogenated structure is N-SiC-2H2H NR. More interestingly, when N ≤ 4, the N-ZSiC-2H2H NR is a nonmagnetic semiconductor, while when 5 ≤ N ≤ 7, it is a ferrimagnetic ferromagnetic semiconductor. When N ≥ 8, the N-SiC-2H2H NR tμms into a ferrimagnetic half-metallic. As regards the N-ZSiC-2H1H NR, when N≤ 12, it is a ferromagnetic semiconductor, while when N ≥ 13, it becomes a ferromagnetic half-metallic. These results manifest that by controlling the hydrogen content of the environment and the temperature, as well as the ribbon width N, one can precisely modulate the electronic and magnetic properties of N-ZSiC NRs, which endows ZSiC NRs with many potential applications in spintronics and nanodevices.
机译:基于密度泛函理论和非平衡格林函数方法,我们系统地研究了氢化作用对N链之字形碳化硅纳米带(N-ZSiC NR)的稳定性,电子和磁性以及电子自旋输运性质的影响,结果表明,通过控制环境中的氢含量,可以得到三种稳定的边缘氢化ZSiC NRs。它们是:(a)每个边缘Si和C原子与一个氢原子键合(N-ZSiC-1H1H),(b)每个边缘Si原子与两个H原子键合,每个边缘C与一个H原子键合(N-ZSiC -2H1H),以及(c)边缘Si和C原子与两个H原子键合(N-ZSiC-2H2H)。出乎意料地发现,已在理论上进行了大量研究的N-ZSiC-1 H1H NR仅在极低的超真空压力下才稳定。在更标准的条件下,最稳定的边缘氢化结构是N-SiC-2H2H NR。更有趣地,当N≤4时,N-ZSiC-2H 2 H NR是非磁性半导体,而当5≤N≤7时,它是亚铁磁性铁磁半导体。当N≥8时,N-SiC-2H2H NRtμms变成亚铁磁性半金属。关于N-ZSiC-2H 1 H NR,当N≤12时,是铁磁半导体,而当N≥13时,则成为铁磁半金属。这些结果表明,通过控制环境中的氢含量和温度以及碳带宽度N,人们可以精确地调节N-ZSiC NR的电子和磁性,这赋予ZSiC NR在自旋电子学和电子学领域许多潜在的应用。纳米设备。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号