首页> 外文期刊>Journal of Materials Chemistry, B. materials for biology and medicine >A combined 'RAFT' and 'Graft From' polymerization strategy for surface modification of mesoporous silica nanoparticles: towards enhanced tumor accumulation and cancer therapy efficacy
【24h】

A combined 'RAFT' and 'Graft From' polymerization strategy for surface modification of mesoporous silica nanoparticles: towards enhanced tumor accumulation and cancer therapy efficacy

机译:结合“ RAFT”和“嫁接自”聚合策略对中孔二氧化硅纳米粒子进行表面改性:增强肿瘤积累和癌症治疗功效

获取原文
获取原文并翻译 | 示例
           

摘要

A novel modification route integrating the copolymers of positive charged quaternary amines and polyethylene glycol (PEG) units using a combination of reversible addition-fragmentation chain-transfer polymerization (RAFT) and "Graft From" strategy, has been proposed and developed, for the first time, to decorate the surface of mesoporous silica nanoparticles (MSNs). These MSNs are shown to have a greatly reduced hydrodynamic particle size in physiological solution. It is demonstrated that such an efficient copolymer surface modification strategy, resulting in PEG coating with high positive zeta potential, can achieve a nearly 2-fold enhanced permeability and retention (EPR) effect, and longer blood half-life compared to coating with PEG only. Besides, the in vivo results demonstrated that this surface modification strategy could lead to a higher efficacy of doxorubicin (DOX) drug delivery and greater suppression of side effects compared to the free drug. Based on this novel strategy of combining "RAFT" and "Graft From" polymerization, it is anticipated that this efficient modification of tumor-specific targeting of MSNs can be widely used in future nanomedicine research.
机译:首次提出并开发了一种新颖的修饰路线,该路线结合了可逆加成-断裂链转移聚合(RAFT)和“接枝自”策略,将带正电荷的季胺和聚乙二醇(PEG)单元的共聚物整合在一起。时间,以装饰中孔二氧化硅纳米粒子(MSNs)的表面。这些MSN在生理溶液中显示出大大减小的流体动力学粒度。结果表明,与仅使用PEG涂层相比,这种有效的共聚物表面修饰策略可导致具有高正Zeta电位的PEG涂层实现近2倍的增强的渗透性和保留(EPR)效果,并具有更长的血液半衰期。此外,体内结果表明,与游离药物相比,这种表面修饰策略可导致阿霉素(DOX)药物递送的更高功效和更大的副作用抑制。基于这种结合“ RAFT”和“ Graft From”聚合的新颖策略,可以预期这种对肿瘤特异性靶向MSNs的有效修饰可广泛用于未来的纳米医学研究中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号