...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Active sites-enriched hierarchical MoS2 nanotubes: highly active and stable architecture for boosting hydrogen evolution and lithium storage
【24h】

Active sites-enriched hierarchical MoS2 nanotubes: highly active and stable architecture for boosting hydrogen evolution and lithium storage

机译:富含活性位的分层MoS2纳米管:高活性和稳定的体系结构,可促进氢的释放和锂的储存

获取原文
获取原文并翻译 | 示例
           

摘要

The design of nanostructures with sufficient active sites is considerably challenging but highly desirable for energy applications. Herein, highly active tubular MoS2 structures on flexible three-dimensional graphene foam are firstly produced by a bottom-up approach using Ni3S2 nanowires as the precursor and self-sacrificial template. The hierarchical tubular structures with high surface curvature expose a large fraction of edge sites and defects, which, along with high surface area, lead to excellent activity for electrocatalytic hydrogen evolution. Remarkably, the integrated hydrogen-evolving electrode operating in acidic electrolytes exhibits high stability and excellent electrocatalytic activity with a low onset overpotential of 77 mV, Tafel slope of 52 mV per decade and large exchange current density of 6.4 x 10(-2) mA cm(-2). When evaluated as an anode material for LIBs, these hierarchical MoS2 nanotubes manifest high specific capacity and excellent rate capability as well as extremely long-term cycle stability. This work elucidates how structure design of nanomaterials can significantly impact the surface structure at the atomic scale, enabling new opportunities for enhancing structure properties and other important technological applications.
机译:具有足够的活性位点的纳米结构的设计具有很大的挑战性,但对于能源应用来说却是非常需要的。本文中,首先使用Ni3S2纳米线作为前体和自牺牲模板,通过自下而上的方法在柔性三维石墨烯泡沫上制备了高活性管状MoS2结构。具有高表面曲率的分级管状结构暴露出很大一部分边缘部位和缺陷,这些缺陷和缺陷以及高表面积导致电催化氢释放的出色活性。值得注意的是,在酸性电解质中运行的集成析氢电极表现出高稳定性和出色的电催化活性,起始过电势低至77 mV,Tafel斜率为每十倍52 mV,交换电流密度高达6.4 x 10(-2)mA cm (-2)。当被评估为LIB的阳极材料时,这些分级的MoS2纳米管表现出高的比容量和出色的倍率性能以及极高的长期循环稳定性。这项工作阐明了纳米材料的结构设计如何在原子尺度上显着影响表面结构,从而为增强结构性能和其他重要技术应用提供了新的机会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号