首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Boost up dielectric constant and push down dielectric loss of carbon nanotube/cyanate ester composites via gradient and layered structure design
【24h】

Boost up dielectric constant and push down dielectric loss of carbon nanotube/cyanate ester composites via gradient and layered structure design

机译:通过梯度和分层结构设计提高介电常数并降低碳纳米管/氰酸酯复合材料的介电损耗

获取原文
获取原文并翻译 | 示例
           

摘要

How to develop high-k materials with extremely low dielectric loss based on commercially available conductors and polymers is still a big challenge. Here we present a general method that simultaneously increases the dielectric constant ten times and decreases the dielectric loss by five orders of magnitude. By adjusting the prepolymerization time of multi-walled carbon nanotube (MWCNT) and cyanate ester (CE) blends and using the layer-by-layer casting procedure, precisely controllable dispersion and distribution of MWCNTs in polymers were achieved. Consequently, a three-layer material (PE-[g-MWCNT0.5/CE-75%](2)) with an optimized prepolymerization degree, consisting of two MWCNT/CE composite layers and one polyethylene (PE) thin film, exhibits a dielectric constant of 1027 and a dielectric loss of 0.02 at 1 Hz. This is one of the best results reported for polymer composites made up of nano-carbon or ceramics to date. The mechanism behind this was elucidated by analyzing the polarization of induced charges and transport of free charges. The formation of vastly interconnected networks of space charge regions, and the existence of a conductor fault and an insulating layer are the main factors that determine an extraordinarily high dielectric constant and extremely low dielectric loss simultaneously.
机译:如何基于市售导体和聚合物开发介电损耗极低的高k材料仍然是一个巨大的挑战。在这里,我们提出了一种一般方法,该方法可以同时将介电常数提高十倍,并将介电损耗降低五个数量级。通过调节多壁碳纳米管(MWCNT)和氰酸酯(CE)共混物的预聚合时间,并使用逐层浇铸程序,可以精确控制可控制的MWCNT在聚合物中的分散和分布。因此,由两层MWCNT / CE复合层和一层聚乙烯(PE)薄膜组成的具有最佳预聚合度的三层材料(PE- [g-MWCNT0.5 / CE-75%](2))表现出在1 Hz时的介电常数为1027,介电损耗为0.02。这是迄今为止报道的由纳米碳或陶瓷制成的聚合物复合材料的最佳结果之一。通过分析感应电荷的极化和自由电荷的传输来阐明其背后的机制。空间电荷区域的高度互连的网络的形成以及导体故障和绝缘层的存在是同时确定极高介电常数和极低介电损耗的主要因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号